能源化学(英文)
ISSN 1003-9953
     
天然气化学(英文) 2011, Vol. 20 Issue (2) :184-190    DOI: 10.1016/S1003-9953(10)60149-1
article 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts
S. O. Soloviev*, A. Yu. Kapran, S. N. Orlyk, E. V. Gubareni

L. V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauky, 31, Kyiv 03028, Ukraine

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
S. O. Soloviev*
A. Yu. Kapran
S. N. Orlyk
E. V. Gubareni
关键词methane   carbon dioxide reforming   hydrogen   syngas   Ni/Al2O3 catalysts   cordierite monolithic supports   honeycomb structure   sodium and potassium   lanthanum oxide modifying additives      
引用本文:   
S. O. Soloviev*, A. Yu. Kapran, S. N. Orlyk等 .Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts[J]  天然气化学(英文), 2011,V20(2): 184-190
S. O. Soloviev*, A. Yu. Kapran, S. N. Orlyk etc .Carbon dioxide reforming of methane on monolithic Ni/Al2O3-based catalysts[J]  Journal of Natural Gas Chemistry, 2011,V20(2): 184-190
链接本文:  
http://www.jngc.org/CN/10.1016/S1003-9953(10)60149-1      或     http://www.jngc.org/CN/Y2011/V20/I2/184
 
[1] Song C, Wei P. Catal Today, 2004, 98(4): 463
[2] Arutyunov V S, Krylov O V. Rus Chem Reviews, 2005, 74(12): 1111
[3] Lee S H, Cho W, Ju W S, Cho B H, Lee Y C, Baek Y S. Catal Today, 2003, 87(1): 133
[4] Hou Z Y, Yokota O, Tanaka T, Yashima T. Catal Lett, 2003, 89(1-2): 121
[5] Zhu X L, Huo P P, Zhang Y P, Cheng D G, Cheng C G, Liu C J. Appl Catal B, 2008 81(1-2): 132
[6] Xu B Q, Wei J M, Yu Y T, Li Y, Li J L, Zhu Q M. J Phys Chem: B, 2003, 107: 5203
[7] Toshihiko O, Toshiaki M. J Catal, 2001, 204(1): 89
[8] Hou Z, Yokota O, Tanaka T A. Catal Lett, 2003, 87(1-2): 37
[9] Tsipouriari V A, Verykios X E. J Catal, 1999, 187(1): 85
[10] Osaki1 T, Fukaya H, Horiuchi T. J Catal, 1998, 180(1): 106
[11] Cybulski A, Moulijn J A. Catal Rev Sci Eng, 1994, 36: 179
[12] Berndt M, Landri P. Catal Today, 2002, 75(1-2): 17
[13] Heck R, Gulati S, Farrauto R. Chem Eng J, 2001, 82(2): 149
[14] Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L. Appl Catal B, 2005, 56(1): 95
[15] Solov’ev S A, Kurilets Y P, Orlik S N. Theor Experim Chem, 2003, 39(1): 58
[16] Halliche D, Bouarab R, Cherifi O, Bettahar M M. Catal Today, 1996, 29(1-4): 373
[17] Xu Z, Li Y M, Zhang J Y, Chang L, Zhou R Q, Duan Z T. Appl Catal A: General, 2001, 213(1): 65
[18] Solov’ev S A, Zatelepa R N, Gubaren E V, Strizhak P E, Moroz E M. Rus Journ Appl Chem, 2007, 80(11): 1883
[19] Bychkov V Y, Krylov O V, Korchak V N. Kinet Catal, 2002, 43(1): 86
[20] Solov’ev S A, Kapran A Y, Orlik S N. Theor Experim Chem, 2007, 43(5): 325
[21] Bychkov V Y, Tyulenin Y P, Krylov O V, Korchak V N. Kinet Catal, 2002, 43(5): 724
[22] Bradford M C J, Vannice M A. Appl Catal A, 1996, 142(1): 73
[23] Firsova A A, Tyulenin Y P, Khomenko T I, Korchak V N, Krylov O V. Kinet Catal, 2003, 44(6): 819
[24] Kapran A Yu, Orlyk S N. Theor Experim Chem, 2005, 41(6): 377.
[25] Ketov A A, Saulin D V, Puzanov I S, Ostrovskii S V, Leonov A N. Rus J Appl Chem, 1997, 70(3): 426
[26] Bychkov V Y, Korchak V N, Krylov O V, Morozova O S, Khomenko T I. Kinet Catal, 2001, 42(4): 561
[27] Halliche D, Cherifi O, Taarit Y B, Aurox A. Kinet catal, 2008, 49(5): 667
[28] Kim J H, Suh D J, Park T J, Kim K L. Stud Surf Sci Catal, 1998, 119: 771
[29] Slagtern A, Schuurman Y, Leclercq C, Verykios X, Mirodatos C. J Catal, 1997, 172(1): 118
[30] Cai X L, Dong X F, Lin W M. J Nat Gas Chem, 2008, 17: 98
[31] Roh H S, Jun K W, Dong W S, Chang J S, Park S E, Joe Y I. J Mol Catal A, 2002, 181(1-2): 137
[1] Ali Farsi*, Sattar Ghader, Ali Moradi, Seyed Soheil Mansouri, Vahid Shad.A simple kinetic model for oxidative coupling of methane over La0.6Sr0.4Co0.8Fe0.2O3-δ nanocatalyst[J]. 天然气化学(英文), 2011,20(3): 325-333
[2] Juan Zou*, Minglin Xiang, Bo Hou, Dong Wu, Yuhan Sun.Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica[J]. 天然气化学(英文), 2011,20(3): 271-280
[3] Haitao Liu, Zhao Zhang, Huiquan Li*, Qingze Huang.Intrinsic kinetics of oxidative dehydrogenation of propane in the presence of CO2 over Cr/MSU-1 catalyst[J]. 天然气化学(英文), 2011,20(3): 311-317
[4] Hengqiang Zhang, Aiguo Kong, Yongjie Ding, Chengyong Dai, Yongkui Shan*.Low-temperature activation of methane over rare earth metals promoted Zn/HZSM-5 zeolite catalysts in the presence of ethylene[J]. 天然气化学(英文), 2011,20(3): 243-248
[5] Xing Zhu, Hua Wang*, Yonggang Wei, Kongzhai Li, Xianming Cheng.Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier[J]. 天然气化学(英文), 2011,20(3): 281-286
[6] Bao Agula, Tiezhen Ren, Xu Zhao, Bao Zhaorigetu, Zhongyong Yuan*.Relationship between the reducibility and selectivity of CeMoxV1-xO4 catalysts by kinetic parameters of TPR[J]. 天然气化学(英文), 2011,20(3): 232-236
[7] Guojun Zou, Zhonglai Wang, Mingjuan Sun, Xu Luo, Xiaolai Wang*.A novel solid-gas process to synthesize LaMnO3 perovskite with high surface area and excellent activity for methane combustion[J]. 天然气化学(英文), 2011,20(3): 294-298
[8] Changlin Yu*, Weizheng Weng, Qing Shu, Xiangjie Meng, Bin Zhang, Xirong Chen, Xiaochun Zhou.Additive effects of alkaline-earth metals and nickel on the performance of Co/γ-Al2O3 in methane catalytic partial oxidation[J]. 天然气化学(英文), 2011,20(2): 135-139
[9] Fereshteh Meshkani, Mehran Rezaei*.Ni catalysts supported on nanocrystalline magnesium oxide for syngas production by CO2 reforming of CH4 [J]. 天然气化学(英文), 2011,20(2): 198-203
[10] Jafar Sadeghzadeh Ahari, Mohammad Taghi Sadeghi*, Saeed Zarrinpashne.Effects of operating parameters on oxidative coupling of methane over Na-W-Mn/SiO2 catalyst at elevated pressures[J]. 天然气化学(英文), 2011,20(2): 204-213
[11] Lihua Liu, Bin Liu, Yongming Chai, Yunqi Liu, Chenguang Liu* .Synergetic effect between sulfurized Mo/γ-Al2O3 and Ni/γ-Al2O3 catalysts in hydrodenitrogenation of quinoline[J]. 天然气化学(英文), 2011,20(2): 214-217
[12] Baowei Wang*, Yijun Lü, Xu Zhang, Shuanghui Hu.Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge[J]. 天然气化学(英文), 2011,20(2): 151-154
[13] Limin Shi*, Wei Chu*, Siyu Deng.Catalytic properties of Cu-Co catalysts supported on HNO3-pretreated CNTs for higher-alcohol synthesis[J]. 天然气化学(英文), 2011,20(1): 48-52
[14] Siang-Piao Chai, Choon-Ming Seah, Abdul Rahman Mohamed.A parametric study of methane decomposition into carbon nanotubes over 8Co-2Mo/Al2O3 catalyst[J]. 天然气化学(英文), 2011,20(1): 84-89
[15] Xiaoli Zhou, Haijie Sun, Wei Guo, Zhongyi Liu*, Shouchang Liu.Selective hydrogenation of benzene to cyclohexene on Ru-based catalysts promoted with Mn and Zn[J]. 天然气化学(英文), 2011,20(1): 53-59
Copyright 2010 by 天然气化学(英文)