能源化学(英文)
ISSN 1003-9953
     
天然气化学 2012, Vol. 21 Issue (3) :215-232    DOI: 10.1016/S1003-9953(11)60357-5
Special Column 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | Next Articles >>
Carbon as a hard template for nano material catalysts (Special Column-Review)
Kake Zhu1, Junming Sun2,3*, He Zhang2, Jun Liu3, Yong Wang2,3*

1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China; 2. The Gene & Linda Voiland

School of Chemical Engineering and Bioengineering, Washington State University, Pullman WA 99164, USA; 3. Institute for Integrated Catalysis,

 Pacific Northwest National Laboratory, Richland WA 99352, USA

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 As one of the naturally abundant elements, carbon can present in different molecular structures (allotropes) and thus lead to various physical/chemical properties of carbon-based materials which have found wide applications in a variety of fields including electrochemistry, optical, adsorption and catalysis, etc. On the other hand, its different allotropes also endow carbon-based materials with various morphostructures, which have been recently explored to prepare oxides and zeolites/zeotypes with tailored structures. In this review, we mainly summarize the recent advances in using carbon materials as hard templates to synthesize structural materials. Specifically, we focus on the development in the synthetic strategies, such as endotemplating, exotemplating approaches and using carbon materials as chemical reagents for the synthesis of metal carbides or nitrides, with an emphasis laid on the control of morphostructure. Meanwhile, the applications of the obtained materials will be highlighted, especially, in the field of heterogeneous catalysis where enhanced performances have been achieved with the materials derived from carbon-templated methods.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
Kake Zhu
Junming Sun*
He Zhang
Jun Liu
Yong Wang*
关键词biomass gasification   residues   biodiesel   catalyst   calcium oxide     
收稿日期: 2012-01-04; 发布日期: 2012-05-28
通讯作者 Yong Wang     Email: junming.sun@wsu.edu; yong.wang@pnnl.gov
引用本文:   
Kake Zhu, Junming Sun*, He Zhang等 .Carbon as a hard template for nano material catalysts (Special Column-Review)[J]  天然气化学 , 2012,V21(3): 215-232
Kake Zhu, Junming Sun*, He Zhang etc .Carbon as a hard template for nano material catalysts (Special Column-Review)[J]  Journal of Energy Chemistry, 2012,V21(3): 215-232
链接本文:  
http://www.jenergchem.org/CN/10.1016/S1003-9953(11)60357-5     或     http://www.jenergchem.org/CN/Y2012/V21/I3/215
 
[1] Flandrois S, Simon B. Carbon, 1999, 37(2): 165
[2] Schüth F. Angew Chem Int Ed, 2003, 42(31): 3604
[3] Suroso S W, Djoewarsa D, Situmorang M S M. 1975
[4] Zhu K, Egeblad K, Christensen C H. Proceedings of the 4th International Feza Conference, Vol 174. 2008, 285
[5] Tosheva L, Valtchev V P. Chem Mater, 2005, 17(10): 2494
[6] Madsen C, Jacobsen C J H. Chem Commun, 1999, (8): 673
[7] Schmidt I, Madsen C, Jacobsen C J H. Inorg Chem, 2000, 39(11): 2279
[8] Jacobsen C J H, Madsen C, Janssens T V W, Jakobsen H J, Skibsted J. Microporous Mesoporous Mater, 2000, 39(1-2): 393
[9] Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J Am Chem Soc, 2000, 122(29): 7116
[10] Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. Chem Commun, 2003, (8): 958
[11] Hartmann M. Angew Chem Int Ed, 2004, 43(44): 5880
[12] Holm M S, Taarning E, Egeblad K, Christensen C H. Catal Today, 2011, 168(1): 3
[13] Perez-Ramirez J, Christensen C H. Catal Today, 2011, 168(1): 1
[14] Nikolakis V, Vlacho D G, Tsapatsis M. Microporous Mesoporous Mater, 1998, 21(4-6): 337
[15] Christensen C H, Johannsen K, Schmidt I, Christensen C H. J Am Chem Soc, 2003, 125(44): 13370
[16] Christensen C H, Schmidt I, Carlsson A, Johannsen K, Herbst K. J Am Chem Soc, 2005, 127(22): 8098
[17] Zhu K K, Hu J Z, She X Y, Liu J, Nie Z M, Wang Y, Peden C H F, Kwak J H. J Am Chem Soc, 2009, 131(28): 9715
[18] Schmidt I, Krogh A, Wienberg K, Carlsson A, Brorson M, Jacobsen C J H. Chem Commun, 2000, (21): 2157
[19] Janssen A H, Schmidt I, Jacobsen C J H, Koster A J, de Jong K P. Microporous Mesoporous Mater, 2003, 65(1): 59
[20] Egeblad K, Kustova M, Klitgaard S K, Zhu K K, Christensen C H. Microporous Mesoporous Mater, 2007, 101(1-2): 214
[21] Flanigen E M. Patton R L.1978
[22] Zones S I, Hwang S J, Elomari S, Ogino I, Davis M E, Burton A W. C R Chim, 2005, 8(3-4): 267
[23] Camblor M A, Corma A, Valencia S. J Mater Chem, 1998, 8(9): 2137
[24] Fan W, Snyder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Penn R L, Stein A, Tsapatsis M. Nat Mater, 2008, 7(12): 984
[25] Egeblad K, Christensen C H, Kustova M, Christensen C H. Chem Mater, 2008, 20(3): 940
[26] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem Soc Rev, 2008, 37(11): 2530
[27] Schwickardi M, Johann T, Schmidt W, Schuth F. Chem Mater, 2002, 14(9): 3913
[28] Carabineiro S A C, Bastos S S T, Órfáo J J M, Pereira M F R, Delgado J L, Figueiredo J L. Applied Catalysis A, 2010, 381(1-2): 150
[29] Jia C J, Schwickardi M, Weidenthaler C, Schmidt W, Korhonen S, Wecichuysen B M, Sch\"{u}th F. J Am Chem Soc, 2011, 133(29): 11279
[30] Onfroy T, Li W-C, Schuth F, Knozinger H. Phys Chem Chem Phys, 2009, 11(19): 3671
[31] Santiago M, Groen J C, Pérez-Ramírez J. J Catal, 2008, 257(1): 152
[32] Zarur A J, Ying J Y. Nature, 2000, 403(6765): 65
[33] Blanco J, Petre A L, Yates M, Martin M P, Suarez S, Martin J A. Adv Mater, 2006, 18(9): 1162
[34] Blanco J, Petre A L, Yates M, Martin M P, Martin J A, Martin-Luengo M A. Appl Catal B, 2007, 73(1-2): 128
[35] Sun J M, Zhu K K, Gao F, Wang C M, Liu J, Peden C H F, Wang Y. J Am Chem Soc, 2011, 133(29): 11096
[36] Tao Y S, Tanaka H, Ohkubo T, Kanoh H, Kaneko K. Adsorpt Sci Technol, 2003, 21(2): 199
[37] Tao Y S, Kanoh H, Kaneko K. J Phys Chem B, 2003, 107(40): 10974
[38] Li W C, Lu A H, Weidenthaler C, Sch\"{u}th F. Chem Mater, 2004, 16(26): 5676
[39] Li W C, Lu A H, Schmidt W, Schuth F. Chem-Eur J, 2005, 11(5): 1658
[40] Li W C, Comotti M, Lu A H, Schuth F. Chem Commun, 2006, (16): 1772
[41] Onfroy T, Li W C, Schueth F, Knoezinger H. Top Catal, 2011, 54(5-7): 390
[42] a) Iijima S. Nature, 1991, 354(6348): 56; (b) Tao Y S, Kanoh H, Kaneko K. J Am Chem Soc, 2003, 125(20): 6044
[43] Snyder C E, Mandeville W H, Tennent H G, Truesdale L K. WO 89/07163 1989
[44] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tománek D, Fischer J E, Smalley R E. Science, 1996, 273(5274): 483
[45] Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Nature, 1993, 363(6430): 605
[46] Iijima S, Ichihashi T. Nature, 1993, 363(6430): 603
[47] Lu W, Lieber C M. Nature Mater, 2007, 6(11): 840
[48] Eder D. Chem Rev (Washington DC US), 2010, 110(3): 1348
[49] Chu H B, Wei L, Cui R L, Wang J Y, Li Y. Coord Chem Rev, 2010, 254(9-10): 1117
[50] Cao G Z, Liu D. Adv Colloid Interface Sci, 2008, 136(1-2): 45
[51] Liang H W, Liu S, Yu S H. Adv Mater, 2010, 22(35): 3925
[52] Dai H, Wong E W, Lu Y Z, Fan S S, Lieber C M. Nature, 1995, 375(6534): 769
[53] Han W Q, Fan S S, Li Q Q, Hu Y D. Science, 1997, 277(5330): 1287
[54] Han W Q, Fan S S, Li Q Q, Gu B L, Zhang X B, Yu D P. Appl Phys Lett, 1997, 71(16): 2271
[55] Li X K, Dong Z J, Westwood A, Brown A, Brydson R, Walton A, Yuan G M, Cui Z W, Cong Y. Cryst Growth Des, 2011, 11(7): 3122
[56] Li X, Westwood A, Brown A, Brydson R, Rand B. Carbon, 2009, 47(1): 201
[57] Pan X L, Bao X H. Acc Chem Res, 2011, 44(8): 553
[58] Sun J M, Bao X H. Chem-Eur J, 2008, 14(25): 7478
[59] Ajayan P M, Stephan O, Redlich P, Colliex C. Nature, 1995, 375(6532): 564
[60] Satishkumar B C, Govindaraj A, Nath M, Rao C N R. J Mater Chem, 2000, 10(9): 2115
[61] Rao C N R, Satishkumar B C, Govindaraj A. Chem Commun, 1997, (16): 1581
[62] Eder D, Kinloch I A, Windle A H. Chem Commun, 2006, (13): 1448
[63] Lee J S, Min B, Cho K, Kim S, Park J, Lee Y T, Kim N S, Lee M S, Park S O, Moon J T. J Cryst Growth, 2003, 254(3-4): 443
[64] Du N, Zhang H, Chen B, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D, Huang X H, Tu J P. Adv Mater, 2007, 19(24): 4505
[65] Du N, Zhang H, Chen B D, Ma X Y, Huang X H, Tu J P, Yang D R. Mater Res Bull, 2009, 44(1): 211
[66] Sun Z Y, Yuan H Q, Liu Z M, Han B X, Zhang X R. Adv Mater, 2005, 17(24): 2993
[67] An G M, Zhang Y, Liu Z M, Miao Z J, Han B X, Miao S D, Li J P. Nanotechnology, 2008, 19(3): 035504
[68] Gao L Z, Wang X L, Chua H T, Kawi S. J Solid State Chem, 2006, 179(7): 2036
[69] Gao L Z, Chua H T, Kawi S. J Solid State Chem, 2008, 181(10): 2804
[70] Min Y S, Bae E J, Jeong K S, Cho Y J, Lee J H, Choi W B, Park G S. Adv Mater, 2003, 15(12): 1019
[71] Parthangal P, Cavicchi R E, Meier D C, Herzing A, Zachariah M R. J Mater Res, 2011, 26(3): 430
[72] Yang Y D, Qu L T, Dai L M, Kang T S, Durstock M. Adv Mater, 2007, 19(9): 1239
[73] Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Chem Mater, 2001, 13(12): 4416
[74] Yu S X, Yang J H, Chu N B, Li G, Lu J M, Wang J Q. Chin J Catal (Cuihua Xuebao), 2009, 30(10): 1035
[75] Konya Z, Kanyo T, Hancz A, Kiricsi I. J Therm Anal Calorim, 2005, 79(3): 567
[76] Pham-Huu C, Wine G, Tessonnier J P, Ledoux M J, Rigolet S, Marichal C. Carbon, 2004, 42(10): 1941
[77] Lacroix M, Louis B, Phana-Huu C, Ledoux M J. Molecular Sieves: From Basic Research to Industrial Applications, Pts a and B, Vol 158. 2005, 169
[78] Yang S, Chen X, Kusunoki M, Yamamoto K, Iwanaga H, Motojima S. Carbon, 2005, 43(5): 916
[79] Takenaka S, Shigeta Y, Tanabe E, Otsuka K. J Phys Chem B, 2004, 108(23): 7656
[80] Qian H S, Yu S H, Luo L B, Gong J Y, Fei L F, Liu X M. Chem Mater, 2006, 18(8): 2102
[81] Ogihara H, Masahiro S, Nodasaka Y, Ueda W. J Solid State Chem, 2009, 182(6): 1587
[82] Wu Q, Ogihara H, Uchida H, Sadakane M, Nodasaka Y, Ueda W. Bull Chem Soc Jpn, 2008, 81(3): 380
[83] Ogihara H, Sadakane M, Nodasaka Y, Ueda W. Chem Lett, 2007, 36(2): 258
[84] Ogihara H, Sadakane M, Nodasaka Y, Ueda W. Chem Mater, 2006, 18(21): 4981
[85] Wu Q A, Sadakane M, Ogihara H, Ueda W. Mater Res Bull, 2010, 45(9): 1330
[86] Yuan R S, Fu X Z, Wang X C, Liu P, Wu L, Xu Y M, Wang X X, Wang Z Y. Chem Mater, 2006, 18(19): 4700
[87] Feng Q. Vol 117. Springer Berlin/Heidelberg, 2010, 73
[88] Gong J Y, Guo S R, Qian H S, Xu W H, Yu S H. J Mater Chem, 2009, 19(7): 1037
[89] Kresge C T, Leonowicz M, Roth W, Vartuli J C, Beck J S. Nature, 1992, 359(6397): 710
[90] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279(5350): 548
[91] Zhang H, Sun J M, Ma D, Weinberg G, Su D S, Bao X H. J Phys Chem B, 2006, 110(51): 25908
[92] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122(43): 10712
[93] Lee J S, Joo S H, Ryoo R. J Am Chem Soc, 2002, 124(7): 1156
[94] Ryoo R, Joo S H, Jun S. J Phys Chem B, 1999, 103(37): 7743
[95] Yang H F, Yan Y, Liu Y, Zhang F Q, Zhang R Y, Meng Y, Li M, Xie S H, Tu B, Zhao D Y. J Phys Chem B, 2004, 108(45): 17320
[96] Sun J M, Ma D, Zhang H, Bao X H, Weinberg G, Su D S. Microporous Mesoporous Mater, 2007, 100(1-3): 356
[97] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angewandte Chemie-International Edition, 2005, 44(43): 7053
[98] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J Am Chem Soc, 2005, 127(39): 13508
[99] Liu R L, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J Am Chem Soc, 2006, 128(35): 11652
[100] Lee J, Kim J, Hyeon T. Adv Mater, 2006, 18(16): 2073
[101] Xia Y D, Yang Z X, Mokaya R. Nanoscale, 2010, 2(5): 639
[102] Roggenbuck J, Tiemann M. J Am Chem Soc, 2005, 127(4): 1096
[103] Shi Y F, Wan Y, Zhao D Y. Chem Soc Rev, 2011, 40(7): 3854
[104] Shi Y, Wan Y, Tu B, Zhao D. J Phys Chem C, 2007, 112(1): 112
[105] Brinker C J, Haaland D M. J Am Ceram Soc, 1983, 66(11): 758
[106] Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe J M, Toury B, Babonneau F, Miele P. Adv Mater, 2005, 17(5): 571
[107] Wu Z X, Li Q A, Peng D, Webley P A, Zhao D Y. J Am Chem Soc, 2010, 132(34): 12042
[108] Cejka J. Appl Catal A, 2003, 254(2): 327
[109] Yuan Q, Yin A X, Luo C, Sun L D, Zhang Y W, Duan W T, Liu H C, Yan C H. J Am Chem Soc, 2008, 130(11): 3465
[110] West C, Mokaya R. Chem Mater, 2009, 21(17): 4080
[111] Yang Z X, Xia Y D, Mokaya R. Adv Mater, 2005, 17(23): 2791
[112] Yang Z X, Xia Y D, Mokaya R. Adv Mater, 2004, 16(8): 727
[113] Groen J C, Peffer L A A, Pérez-Ramírez J. Microporous Mesoporous Mater, 2003, 60(1-3): 1
[114] Tao Y S, Kanoh H, Kaneko K. Adv Mater, 2005, 17(23): 2789
[115] Zhu K, Egeblad K, Christensen C H. Eur J Inorg Chem, 2007, (25): 3955
[116] Gobin O C, Reitmeier S J, Jentys A, Lercher J A. J Phys Chem C, 2009, 113(47): 20435
[117] Reitmeier S J, Gobin O C, Jentys A, Lercher J A. J Phys Chem C, 2009, 113(34): 15355
[118] Koo J B, Jiang N, Saravanamurugan S, Bejblová M, Musilová Z, ?ejka J, Park S E. J Catal, 2010, 276(2): 327
[119] Xin H C, Zhao J, Xu S T, Li J P, Zhang W P, Guo X W, Hensen E J M, Yang Q H, Li C. J Phys Chem C, 2010, 114(14): 6553
[120] Christensen C H, Schmidt I, Christensen C H. Catal Commun, 2004, 5(9): 543
[1] Y. S. Mok, E. Jwa, Y. J. Hyun.Regeneration of C4H10 dry reforming catalyst by nonthermal plasma[J]. 能源化学(英文), 2013,22(3): 394-402
[2] Toon Witvrouwen, Jan Dijkmans, Sabine Paulussen, Bert Sels.A design of experiments approach for the development of plasma synthesized Sn-silicate catalysts for the isomerization of glucose to fructose[J]. 能源化学(英文), 2013,22(3): 451-458
[3] Cuili Guo, Yuanyuan Wu, Xin Wang, Bo Yang.Effect of the support calcination temperature on selective hydrodesulfurization of TiO2 nanotubes supported CoMo catalysts[J]. 能源化学(英文), 2013,22(3): 517-523
[4] Sheng Sui, Xiaolong Zhuo, Kaihua Su, Xianyong Yao, Junliang Zhang, Shangfeng Du, Kevin Kendall.In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells (PEMFCs)[J]. 能源化学(英文), 2013,22(3): 477-483
[5] Wenjin Yan, Xinli Jia, Tao Chen, Yanhui Yang.Optimization and statistical analysis of Au-ZnO/Al2O3 catalyst for CO oxidation[J]. 能源化学(英文), 2013,22(3): 498-505
[6] Volodymyr V. Strelko.Role of carbon matrix heteroatoms at synthesis of carbons for catalysis and energy applications[J]. 能源化学(英文), 2013,22(2): 174-182
[7] José L. Figueiredo, Manuel F. R. Pereira.Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts[J]. 能源化学(英文), 2013,22(2): 195-201
[8] Liang Wang, Jian Zhang, Longfeng Zhu, Xiangju Meng, Feng-Shou Xiao.Efficient conversion of fructose to 5-hydroxymethylfurfural over sulfated porous carbon catalyst[J]. 能源化学(英文), 2013,22(2): 241-244
[9] T. van Haasterecht, C. C. I. Ludding, K. P. de Jong, J. H. Bitter.Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol[J]. 能源化学(英文), 2013,22(2): 257-269
[10] O. Yu. Podyacheva, A. N. Shmakov, A. I. Boronin, L. S. Kibis, S. V. Koscheev, E. Yu. Gerasimov, Z. R. Ismagilov.A correlation between structural changes in a Ni-Cu catalyst during decomposition of ethylene/ammonia mixture and properties of nitrogen-doped carbon nanofibers[J]. 能源化学(英文), 2013,22(2): 270-278
[11] Tasuku Komanoya, Hirokazu Kobayashi, Kenji Hara, Wang-Jae Chun, Atsushi Fukuoka.Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts[J]. 能源化学(英文), 2013,22(2): 290-295
[12] Peirong Chen, Ly May Chew, Aleksander Kostka, Kunpeng Xie, Martin Muhler, Wei Xia.Purified oxygen- and nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation[J]. 能源化学(英文), 2013,22(2): 312-320
[13] Hongpeng Zhang, Haichao Liu* .Insights into support effects on Ce-Zr-O mixed oxide-supported gold catalysts in CO oxidation[J]. 能源化学(英文), 2013,22(1): 98-106
[14] Karthikeyan K. Ramasamy, Yong Wang* .Catalyst activity comparison of alcohols over zeolites [J]. 能源化学(英文), 2013,22(1): 65-71
[15] Jing Sunb, Jian Zhanga, Liang Wangb, Longfeng Zhub, Xiangju Menga, Feng-Shou Xia.Co-salen functionalized on graphene as an efficient heterogeneous catalyst for cyclohexene oxidation[J]. 能源化学(英文), 2013,22(1): 48-51
Copyright 2010 by 能源化学(英文)