能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :1-7    DOI: 10.1016/j.jechem.2016.09.007
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | Next Articles >>
The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries
Xiaofei Yanga,b, Tao Liua, Chi Xua,b, Hongzhang Zhanga,c, Xianfeng Lia,c, Huamin Zhanga,c
a Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
b University of Chinese Academy of Sciences, Beijing 100039, China;
c Collaborative Innovation Center of Chemistry for Energy Materials(iChEM), Dalian 116023, Liaoning, China
Download: PDF (709KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 The effect of bismuth (Bi) for both VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries (VFBs) has been investigated by directly introducing Bi on the surface of carbon felt (CF). The results show that Bi has no catalytic effect for VO2+/VO2+ redox couple. During the first charge process, Bi is oxidized to Bi3+ (never return back to Bi metal in the subsequent cycles) due to the low standard redox potential of 0.308 V (vs. SHE) for Bi3+/Bi redox couple compared with VO2+/VO2+ redox couple and Bi3+ exhibit no (or neglectable) electro-catalytic activity. Additionally, the relationship between Bi loading and electrochemical activity for V3+/V2+ redox couple was studied in detail. 2 wt% Bi-modified carbon felt (2%-BiCF) exhibits the highest electrochemical activity. Using it as negative electrode, a high energy efficiency (EE) of 79.0% can be achieved at a high current density of 160 mA/cm2, which is 5.5% higher than the pristine one. Moreover, the electrolyte utilization ratio is also increased by more than 30%. Even the cell operated at 140 mA/cm2 for over 300 cycles, the EE can reach 80.9% without obvious fluctuation and attenuation, suggesting excellent catalytic activity and electrochemical stability in VFBs.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Vanadium flow battery   Bismuth   Catalysis   Electrochemical activity   Energy efficiency     
收稿日期: 2016-07-13; 发布日期: 2016-11-08
基金资助:

The authors greatly acknowledge the financial support from the China Natural Science Foundation (Grant nos. 51403209, 21406221, 21206158, 21476224, 21406219 and 51361135701) and the Outstanding Young Scientist Foundation, Chinese Academy of Sciences (CAS), Supported by the Key Research Program of the Chinese Academy of Sciences (KG2D-EW-602-2), Science and Technology Service Network Initiative (KFJ-EW-STS-108), Dalian Municipal Outstanding Young Talent Foundation (2014J11JH131).

通讯作者 Hongzhang Zhang, Huamin Zhang     Email: zhanghz@dicp.ac.cn;zhanghm@dicp.ac.cn
引用本文:   
.The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries[J]  能源化学(英文) , 2017,V26(1): 1-7
.The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries[J]  Journal of Energy Chemistry, 2017,V26(1): 1-7
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.09.007     或     http://www.jenergchem.org/CN/Y2017/V26/I1/1
 
[1] A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q. Liu, J. Appl. Electrochem. 41(2011) 1137-1164.
[2] Q. Zheng, X. Li, Y. Cheng, G. Ning, F. Xing, H. Zhang, Appl. Energy 132(2014) 254-266.
[3] Q. Zheng, H. Zhang, F. Xing, X. Ma, X. Li, G. Ning, Appl. Energy 113(2014) 1675-1685.
[4] M. Rychcik, M. Skyllas-Kazacos, J. Power Sources 19(1987) 45-54.
[5] X. Li, H. Zhang, Z. Mai, H. Zhang, I. Vankelecom, Energy Environ. Sci. 4(2011) 1147.
[6] B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 13(2013) 1330-1335.
[7] E. Agar, C.R. Dennison, K.W. Knehr, E.C. Kumbur, J. Power Sources 225(2013) 89-94.
[8] B. Sun, M Skyllas-Kazacos, Electrochim. Acta 37(1992) 1253-1260.
[9] S.Q. Liu, X.F. Shi, K.L. Huang, X.G. Li, J. Inorg. Mater. 24(2009) 798-802.
[10] B. Sun, M. Skyllas-Kazacos, Electrochim. Acta 37(1992) 2459-2465.
[11] L. Yue, W. Li, F. Sun, L. Zhao, L. Xing, Carbon 48(2010) 3079-3090.
[12] T. Wu, K. Huang, S. Liu, S. Zhuang, D. Fang, S. Li, D. Lu, A. Su, J. Solid State Electrochem. 16(2011) 579-585.
[13] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, J. Power Sources 195(2010) 4375-4379.
[14] H. Lee, H. Kim, J. Appl. Electrochem. 43(2013) 553-557.
[15] S. Park, H. Kim, J. Mater. Chem. A 3(2015) 11276-11283.
[16] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochim. Acta 89(2013) 429-435.
[17] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Electrochim. Acta 101(2013) 27-40.
[18] W.H. Wang, X.D. Wang, Electrochim. Acta 52(2007) 6755-6762.
[19] C. Yao, H. Zhang, T. Liu, X. Li, Z. Liu, J. Power Sources 218(2012) 455-461.
[20] C. Flox, J. Rubio-Garcia, R. Nafria, R. Zamani, M. Skoumal, T. Andreu, J. Arbiol, A. Cabot, J.R. Morante, Carbon 50(2012) 2372-2374.
[21] K.J. Kim, M.S. Park, J.H. Kim, U. Hwang, N.J. Lee, G. Jeong, Y.J. Kim, Chem. Commun. 48(2012) 5455-5457.
[22] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nano Lett. 14(2014) 158-165.
[23] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, RSC Adv. 4(2014) 61912-61918.
[24] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Electrochem. Commun. 13(2011) 1379-1382.
[25] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, J. Power Sources 286(2015) 73-81.
[26] D.J. Suarez, Z. Gonzalez, C. Blanco, M. Granda, R. Menendez, R. Santamaria, ChemSusChem 7(2014) 914-918.
[27] C. Gao, N. Wang, S. Peng, S. Liu, Y. Lei, X. Liang, S. Zeng, H. Zi, Electrochim. Acta 88(2013) 193-202.
[28] Z. Mai, H. Zhang, H. Zhang, W. Xu, W. Wei, H. Na, X. Li, ChemSusChem 6(2013) 328-335.
[1] Diego Mateo, Francisco Gonell, Josep Albero, Avelino Corma, Hermenegildo García.Structure-activity relationship in Ti phosphate-derived photocatalysts for H2 evolution[J]. 能源化学(英文), 2017,26(2): 295-301
[2] Tatsuya Shinagawa, Zhen Cao, Luigi Cavallo, Kazuhiro Takanabe.Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid-electrolyte interfaces[J]. 能源化学(英文), 2017,26(2): 259-269
[3] Sun-Young Park, Kai Han, Devin B. O'Neill, Guido Mul.Stability of Ag@SiO2 core-shell particles in conditions of photocatalytic overall water-splitting[J]. 能源化学(英文), 2017,26(2): 309-314
[4] Mingwen Zhang, Jinshui Zhang, Yan Chen, Xinchen Wang.Molecular pore-wall engineering of mesozeolitic conjugated polymers for photoredox hydrogen production with visible light[J]. 能源化学(英文), 2017,26(1): 87-92
[5] Sobhan Mortazavi-Derazkola, Masoud Salavati-Niasar i, Omid Amir i, Ali Abbasi.Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution[J]. 能源化学(英文), 2017,26(1): 17-23
[6] Qi Zhang, Jing Dong, Yongmei Liu, Yangdong Wang, Yong Cao.Towards a green bulk-scale biobutanol from bioethanol upgrading[J]. 能源化学(英文), 2016,25(6): 907-910
[7] Xueqiang Zhang, Xinbing Cheng, Qiang Zhang.Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. 能源化学(英文), 2016,25(6): 967-984
[8] Kang-Qiang Lu, Quan Quan, Nan Zhang, Yi-Jun Xu.Multifarious roles of carbon quantum dots in heterogeneous photocatalysis[J]. 能源化学(英文), 2016,25(6): 927-935
[9] Lizhong Zhang, Qian Zhai, Xiufeng Zhao, Xuemei Min, Qiuhui Zhu, Jianhui Li.Modified wool-iron biopolymer-based complex as an active heterogeneous decontamination photocatalyst[J]. 能源化学(英文), 2016,25(6): 1064-1069
[10] Yunchuan Tu, Dehui Deng, Xinhe Bao.Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries[J]. 能源化学(英文), 2016,25(6): 957-966
[11] Huiyuan Xu, Jingjie Luo, Shenying Xu, Denglei Zhu, Wei Chu.Promoter effect of La2O3 on gold catalyst with different textural structures[J]. 能源化学(英文), 2016,25(5): 854-860
[12] E. M. Briz-López, M. J. Ramírez-Moreno, I. C. Romero-Ibarra, C. Gómez-Yáñez, H. Pfeiffer, J. Ortiz-Landeros.First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture[J]. 能源化学(英文), 2016,25(5): 754-760
[13] Yu Wang, Yaping Zeng, Boqiao Li, Anqi Li, Ping Yang, Liu Yang, Gang Wang, Jinwei Chen, Ruilin Wang.In-situ hydrothermal synthesized γ-Al2O3/O-g-C3N4 heterojunctions with enhanced visible-light photocatalytic activity in water splitting for hydrogen[J]. 能源化学(英文), 2016,25(4): 594-600
[14] Bin Wang, Nan Li, Qiang Zhang, Chunyi Li, Chaohe Yang, Honghong Shan.Studies on the preliminary cracking: The reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with large molecular size[J]. 能源化学(英文), 2016,25(4): 641-653
[15] Lixia Li, Jing Ya, Fengjiao Hu, Zhifeng Liu, Lei E.Photocatalytic decompositions of gaseous HCHO and methylene blue with highly ordered TiO2 nanotube arrays[J]. 能源化学(英文), 2016,25(4): 740-746
Copyright 2010 by 能源化学(英文)