能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :17-23    DOI: 10.1016/j.jechem.2016.10.015
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution
Sobhan Mortazavi-Derazkolaa, Masoud Salavati-Niasar ia, Omid Amir ib, Ali Abbasia
a Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box 87317-51167, Kashan, Islamic Republic of Iran;
b Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA
Download: PDF (645KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 In this work we synthesize a novel and highly efficient photocatalyst for degradation of methyl orange and rhodamine B. In addition, a new method for synthesis of Fe3O4@SiO2@TiO2@Ho magnetic core-shell nanoparticles with spherical morphology is proposed. The crystal structures, morphology and chemical properties of the as-synthesized nanoparticles were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS) and vibrating sample magnetometer (VSM) techniques. The photocatalytic activity of Fe3O4@SiO2@TiO2@Ho was investigated by degradation of methyl orange (MO) as cationic dye and rhodamine B (RhB) as anionic dye in aqueous solution under UV/vis irradiation. The results indicate that about 92.1% of RhB and 78.4% of MO were degraded after 120 and 150 min, respectively. These degradation results show that Fe3O4@SiO2@TiO2@Ho nanoparticles are better photocatalyst than Fe3O4@SiO2@TiO2 for degradation of MO and RhB. As well as, the catalyst shows high recovery and stability even after several separation cycles.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Catalysis   Adsorption chemistry   Physical adsorption   Chemical adsorption     
收稿日期: 2016-08-22; 发布日期: 2016-11-30
基金资助:

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No (159271/999).

通讯作者 Masoud Salavati-Niasari     Email: Salavati@kashanu.ac.ir
引用本文:   
.Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution[J]  能源化学(英文) , 2017,V26(1): 17-23
.Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution[J]  Journal of Energy Chemistry, 2017,V26(1): 17-23
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.10.015     或     http://www.jenergchem.org/CN/Y2017/V26/I1/17
 
[1] J. Rashid, M.A. Barakat, Y. Ruzmanova, A. Chianese, Environ. Sci. Pollut. Res. 22(2015) 3149-3157.
[2] Z.Y. Lu, X.X. Zhao, Z. Zhu, Y.S. Yan, W.D. Shi, H.J. Dong, Z.F. Ma, N.L. Gao, Y.S. Wang, H. Hung, Chem.-Eur. J. 21(2015) 18528-18533.
[3] Z.Y. Lu, X.X. Zhao, Z. Zhu, M.S. Song, N.L. Gao, Y.S. Wang, Z.F. Ma, W.D. Shi, Y.S. Yan, H.J. Dong, Catal. Sci. Technol. 6(2016) 6513-6524.
[4] C. Xue, Q. Zhang, J. Li, X. Chou, W. Zhang, H. Ye, Z. Cui, P.J. Dobson, J. Nanomater. 2013(2013) 8.
[5] P.V.A. Padmanabhan, K.P. Sreekumar, T.K. Thiyagarajan, R.U. Satpute, K. Bhanumurthy, P. Sengupta, G.K. Dey, K.G.K. Warrier, Vacuum 80(2006) 1252-1255.
[6] Z.Y. Lu, Z. Zhu, D.D. Wang, Z.F. Ma, W.D. Shi, Y.S. Yan, X.X. Zhao, H.J. Dong, L. Yang, Z.F. Hua, Catal. Sci. Technol. 6(2016) 1367-1377.
[7] X. Li, D. Liu, S. Song, H. Zhang, Cryst. Growth Des. 14(2014) 5506-5511.
[8] S.H. Wu, J.L. Wu, S.Y. Jia, Q.W. Chang, H.T. Ren, Y. Liu, Appl. Surf. Sci. 287(2013) 389-396.
[9] J. Ma, S. Guo, X. Guo, H. Ge, Appl. Surf. Sci. 353(2015) 1117-1125.
[10] J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, J. Colloid Interface Sci. 349(2010) 293-299.
[11] G. Liu, J. Pan, L. Yin, J.T.S. Irvine, F. Li, J. Tan, P. Wormald, H.-M. Cheng, Adv. Funct. Mater. 22(2012) 3233-3238.
[12] Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S.-J. Kim, Langmuir 24(2008) 8351-8357.
[13] B. Xin, Z. Ren, P. Wang, J. Liu, L. Jing, H. Fu, Appl. Surf. Sci. 253(2007) 4390-4395.
[14] K.E. O'Shea, E. Pernas, J. Saiers, Langmuir 15(1999) 2071-2076.
[15] L. Enayati Ahangar, K. Movassaghi, M. Emadi, F. Yaghoobi, Nanochem. Res 1(2016) 33-39.
[16] Y. Li, M. Zhang, M. Guo, X. Wang, Rare Met 28(2009) 423-427.
[17] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111(2011) 3036-3075.
[18] Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, J. Colloid Interface Sci. 383(2012) 96-102.
[19] T. Zhang, X. Zhang, J. Ng, H. Yang, J. Liu, D.D. Sun, Chem. Commun. 47(2011) 1890-1892.
[20] S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49(2010) 3428-3459.
[21] J. Zhan, H. Zhang, G. Zhu, Ceram. Int. 40(2014) 8547-8559.
[22] T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, Appl. Surf. Sci. 288(2014) 51-59.
[23] Z. Lu, F. Chen, M. He, M.S. Song, Z.F. Ma, W.D. Shi, Y.S. Yan, J. Lan, F. Li, P. Ziao, Chem. Eng. J. 249(2014) 15-26.
[24] F. Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen, S. Fang, Dalton Trans 43(2014) 13537-13544.
[25] X. Li, D. Liu, S. Song, H. Zhang, Cryst. Growth Des. 14(2014) 5506-5511.
[26] P. Sathishkumar, N. Pugazhenthiran, R.V. Mangalaraja, A.M. Asiri, S. Anandan, J. Hazard Mater. 252(2013) 171-179.
[27] H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, K. Li, Catal. Sci. Technol. 4(2014) 494-501.
[28] F. Ahangaran, A. Hassanzadeh, S. Nouri, Int. Nano Lett. 3(2013) 1-5.
[29] M. Maicu, M.C. Hidalgo, G. Colon, J.A. Navio, J. Photochem. Photobiol. A 217(2011) 275-283.
[30] S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 5(2015) 56666-56676.
[31] X. Shihong, S. Wenfeng, Y. Jian, C. Mingxia, S. Jianwei, J. Zhi, Nanotechnology 19(2008) 095606.
[32] J. Ji, P. Zeng, S. Ji, W. Yang, H. Liu, Y. Li, Catal. Today 158(2010) 305-309.
[33] M. Schraml-Marth, K.L. Walther, A. Wokaun, B.E. Handy, A. Baiker, J. Non-cryst. Solids 143(1992) 93-111.
[34] I.A. Rahman, P. Vejayakumaran, C.S. Sipaut, J. Ismail, M. Abu Bakar, R. Adnan, C.K. Chee, Colloids Surf. A 294(2007) 102-107.
[35] X. Yu, S. Liu, J. Yu, Appl. Catal. B 104(2011) 12-20.
[36] S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41(2015) 9593-9601.
[37] M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Polyhedron 35(2012) 149-153.
[1] Diego Mateo, Francisco Gonell, Josep Albero, Avelino Corma, Hermenegildo García.Structure-activity relationship in Ti phosphate-derived photocatalysts for H2 evolution[J]. 能源化学(英文), 2017,26(2): 295-301
[2] Tatsuya Shinagawa, Zhen Cao, Luigi Cavallo, Kazuhiro Takanabe.Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid-electrolyte interfaces[J]. 能源化学(英文), 2017,26(2): 259-269
[3] Sun-Young Park, Kai Han, Devin B. O'Neill, Guido Mul.Stability of Ag@SiO2 core-shell particles in conditions of photocatalytic overall water-splitting[J]. 能源化学(英文), 2017,26(2): 309-314
[4] Mingwen Zhang, Jinshui Zhang, Yan Chen, Xinchen Wang.Molecular pore-wall engineering of mesozeolitic conjugated polymers for photoredox hydrogen production with visible light[J]. 能源化学(英文), 2017,26(1): 87-92
[5] Xiaofei Yang, Tao Liu, Chi Xu, Hongzhang Zhang, Xianfeng Li, Huamin Zhang.The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries[J]. 能源化学(英文), 2017,26(1): 1-7
[6] Lizhong Zhang, Qian Zhai, Xiufeng Zhao, Xuemei Min, Qiuhui Zhu, Jianhui Li.Modified wool-iron biopolymer-based complex as an active heterogeneous decontamination photocatalyst[J]. 能源化学(英文), 2016,25(6): 1064-1069
[7] Kang-Qiang Lu, Quan Quan, Nan Zhang, Yi-Jun Xu.Multifarious roles of carbon quantum dots in heterogeneous photocatalysis[J]. 能源化学(英文), 2016,25(6): 927-935
[8] Qi Zhang, Jing Dong, Yongmei Liu, Yangdong Wang, Yong Cao.Towards a green bulk-scale biobutanol from bioethanol upgrading[J]. 能源化学(英文), 2016,25(6): 907-910
[9] Yunchuan Tu, Dehui Deng, Xinhe Bao.Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries[J]. 能源化学(英文), 2016,25(6): 957-966
[10] Xueqiang Zhang, Xinbing Cheng, Qiang Zhang.Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. 能源化学(英文), 2016,25(6): 967-984
[11] Huiyuan Xu, Jingjie Luo, Shenying Xu, Denglei Zhu, Wei Chu.Promoter effect of La2O3 on gold catalyst with different textural structures[J]. 能源化学(英文), 2016,25(5): 854-860
[12] Yu Wang, Yaping Zeng, Boqiao Li, Anqi Li, Ping Yang, Liu Yang, Gang Wang, Jinwei Chen, Ruilin Wang.In-situ hydrothermal synthesized γ-Al2O3/O-g-C3N4 heterojunctions with enhanced visible-light photocatalytic activity in water splitting for hydrogen[J]. 能源化学(英文), 2016,25(4): 594-600
[13] Lixia Li, Jing Ya, Fengjiao Hu, Zhifeng Liu, Lei E.Photocatalytic decompositions of gaseous HCHO and methylene blue with highly ordered TiO2 nanotube arrays[J]. 能源化学(英文), 2016,25(4): 740-746
[14] Bin Wang, Nan Li, Qiang Zhang, Chunyi Li, Chaohe Yang, Honghong Shan.Studies on the preliminary cracking: The reasons why matrix catalytic function is indispensable for the catalytic cracking of feed with large molecular size[J]. 能源化学(英文), 2016,25(4): 641-653
[15] Xiaobo Li, Yao Zheng, Anthony F. Masters, Thomas Maschmeyer.A nano-engineered graphene/carbon nitride hybrid for photocatalytic hydrogen evolution[J]. 能源化学(英文), 2016,25(2): 225-227
Copyright 2010 by 能源化学(英文)