? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :42-48    DOI: 10.1016/j.jechem.2016.09.001
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La
Alicia Carrero, Arturo J. Vizcaíno, José A. Calles, Lourdes García-Moreno
Department of Chemical and Energy Technology, ESCET, Rey Juan Carlos University, 28933 Móstoles, Spain
Download: PDF (451KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 The steam reforming of glycerol has been studied at 500 and 600℃ using Co/SBA-15 and Co/M/SBA-15 (M:Zr, Ce, or La) promoted catalysts. The prepared materials were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray powder diffraction (XRD), hydrogen temperatureprogramed reduction (H2-TPR), ammonia temperature-programed desorption (NH3-TPD), nitrogen physisorption analysis (N2-BET), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The incorporation of promoters like Zr, Ce and La on SBA-15 support and successive Co impregnation leaded to smaller cobalt crystallites improving metaldispersion. Besides, stronger metal-support interactions between Co species and M/SBA-15 supports were observed. Thanks to the incorporation of Zr, La and mainly Ce, promoted catalysts present higher glycerol conversion than Co/SBA-15 along 5 h of time on stream. Besides, at 600℃, Co/M/SBA-15 (M:Zr, Ce, or La) catalysts produce higher hydrogen amounts than Co/SBA-15.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Cobalt   SBA-15   Cerium   Zirconium   Lanthanum   Steam reforming   Hydrogen     
收稿日期: 2016-06-10; 发布日期: 2016-09-08
基金资助:

The authors acknowledge the financial support from the "Comunidad Autónoma de Madrid" through the RESTOENE2 project (S2013/MAE-2882) and from the "Ministerio de Economía y Competitividad" through the project CTQ2013-44447-R.

通讯作者 Alicia Carrero     Email: alicia.carrero@urjc.es
引用本文:   
.Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La[J]  能源化学(英文) , 2017,V26(1): 42-48
.Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La[J]  Journal of Energy Chemistry, 2017,V26(1): 42-48
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.09.001     或     http://www.jenergchem.org/CN/Y2017/V26/I1/42
 
[1] A. Ajanovic, Energy 60(2013) 733-738.
[2] C. Marino, A. Nucara, M. Pietrafesa, A. Pudano, Energy 57(2013) 95-105.
[3] K. Wang, J. Zhang, L. Tang, H. Zhang, G. Zhang, X. Yang, P. Liu, Z. Mao, Bioresour. Technol. 148(2013) 453-460.
[4] E.B. Pereira, P. Ramírez de la Piscina, N. Homs, Bioresour. Technol. 102(2011) 3419-3423.
[5] A.J. Vizcaíno, A. Carrero, J.A. Calles, Hydrogen Production:Prospects and Processes, Nova Science Publishers, Inc., New York, 2012, pp. 247-294.
[6] M. Gupta, N. Kumar, Renew. Sustain. Energy Rev. 16(2012) 4551-4556.
[7] S.M. Rezende, C.A. De Franchini, M. Laura, A.M. Duarte, D. Farias, N. Amadeo, M.A. Fraga, Chem. Eng. J. 272(2015) 108-118.
[8] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuels 19(2005) 2098-2106.
[9] J.M. Silva, M.A. Soria, L.M. Madeira, Renew. Sustain. Energy Rev. 42(2015) 1187-1213.
[10] B. Zhang, X. Tang, Y. Li, Y. Xu, W. Shen, Int. J. Hydrog. Energy 32(2007) 2367-2373.
[11] B. Banach, A. MacHocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catal. Today 176(2011) 28-35.
[12] E.B. Pereira, N. Homs, S. Martí, J.L.G. Fierro, P. Ramírez de, La Piscina, J. Catal. 257(2008) 206-214.
[13] J. Llorca, J.A. Dalmon, P. Ramírez De la Piscina, N. Homs, Appl. Catal. A Gen. 243(2003) 261-269.
[14] T. Tsoncheva, L. Ivanova, C. Minchev, M.J. Fröba, Colloid Interface Sci. 333(2009) 277-284.
[15] J.A. Calles, A. Carrero, A.J. Vizcaíno, Microporous Mesoporous Mater. 119(2009) 200-207.
[16] J.A. Calles, A. Carrero, A.J. Vizcaíno, M. Lindo, Catalysts 5(2015) 58-76.
[17] A.J. Vizcaíno, M. Lindo, A. Carrero, J.A. Calles, Int. J. Hydrog. Energy 37(2012) 1985-1992.
[18] M. El Doukkali, A. Iriondo, P.L. Arias, J.F. Cambra, I. Gandarias, V.L. Barrio, Int. J. Hydrog. Energy 37(2012) 8298-8309.
[19] A. Iriondo, J.F. Cambra, M.B. Güemez, V.L. Barrio, J. Requies, M.C. Sánchez-Sánchez, R.M. Navarro, Int. J. Hydrog. Energy 37(2012) 7084-7093.
[20] S. Natesakhawat, R.B. Watson, X. Wang, U.S. Ozkan, J. Catal. 234(2005) 496-508.
[21] C. Zhang, S. Li, M. Li, S. Wang, X. Ma, J. Gong, AIChE J. 58(2012) 516-525.
[22] J. Hong, W. Chu, P.A. Chernavskii, A.Y. Khodakov, Appl. Catal. A Gen. 382(2010) 28-35.
[23] S. Mu, D. Li, B. Hou, L. Jia, J. Chen, Y. Sun, Energy Fuels 24(2010) 3715-3718.
[24] Z. Mu, J.J. Li, H. Tian, Z.P. Hao, S.Z. Qiao, Mater. Res. Bull. 43(2008) 2599-2606.
[25] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. Fredrickson, B. Chmelka, G. Stucky, Science 279(1998) 548-552.
[26] J.A. Calles, A. Carrero, A.J. Vizcaíno, L. García-Moreno, Catal. Today 227(2014) 198-206.
[27] R.C. Reuel, C.H. Bartholomew, J. Catal. 85(1984) 63-77.
[28] G. Prieto, A. Martinez, P. Concepción, R. Moreno-Tost, J. Catal. 266(2009) 129-144.
[29] O. González, H. Pérez, P. Navarro, L.C. Almeida, J.G. Pacheco, M. Montes, Catal. Today 148(2009) 140-147.
[30] I. Rossetti, J. Lasso, V. Nichele, M. Signoretto, E. Finocchio, G. Ramis, A. Di Michele, Appl. Catal. B Environ. 150-151(2014) 257-267.
[31] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Appl. Catal. A Gen. 233(2002) 263-281.
[32] A. Martínez, C. López, F. Márquez, I Díaz, J. Catal. 220(2003) 486-499.
[33] N. Wang, X. Yua, Y. Wang, W. Chua, M. Liu. Catal. Today 212(2013) 98-107.
[34] X. Li, Y. Zhang, K.J. Smith, Appl. Catal. A Gen. 264(2004) 81-91.
[35] A.J. Vizcaino, A. Carrero, J.A. Calles, Fuel Process. Technol. 146(2016) 99-109.
[36] G.L. Chiarello, J.-D. Grunwaldt, D. Ferri, F. Krumeich, C. Oliva, L. Forni, A. Baiker, J. Catal. 252(2007) 127-136.
[37] P.D. Vaidya, A.E. Rodrigues, Chem. Eng. Technol. 32(10) (2009) 1463-1469.
[1] G. L. Chiarello, M. V. Dozzi, E. Selli.TiO2-based materials for photocatalytic hydrogen production[J]. 能源化学(英文), 2017,26(2): 250-258
[2] Tatsuya Shinagawa, Zhen Cao, Luigi Cavallo, Kazuhiro Takanabe.Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid-electrolyte interfaces[J]. 能源化学(英文), 2017,26(2): 259-269
[3] Chiara Gionco, Maria C. Paganini, Elio Giamello, Olga Sacco, Vincenzo Vaiano, Diana Sannino.Rare earth oxides in zirconium dioxide: How to turn a wide band gap metal oxide into a visible light active photocatalyst[J]. 能源化学(英文), 2017,26(2): 270-276
[4] Claudio Ampelli, Francesco Tavella, Chiara Genovese, Siglinda Perathoner, Marco Favaro, Gabriele Centi.Analysis of the factors controlling performances of Au-modified TiO2 nanotube array based photoanode in photo-electrocatalytic (PECa) cells[J]. 能源化学(英文), 2017,26(2): 284-294
[5] Diego Mateo, Francisco Gonell, Josep Albero, Avelino Corma, Hermenegildo García.Structure-activity relationship in Ti phosphate-derived photocatalysts for H2 evolution[J]. 能源化学(英文), 2017,26(2): 295-301
[6] Robert A. Varin, Deepak K. Mattar, Amirreza Shirani Bidabadi, Marek Polanski.Synthesis of amorphous manganese borohydride in the (NaBH4-MnCl2) system, its hydrogen generation properties and crystalline transformation during solvent extraction[J]. 能源化学(英文), 2017,26(1): 24-34
[7] Vincent Mirai Bau, Xiangjie Bo, Liping Guo.Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction[J]. 能源化学(英文), 2017,26(1): 63-71
[8] Gunjana Chaudhary, Ashok K. Sharma, Preetam Bhardwaj, Kamal Kant, Indu Kaushal, Ajay K. Mishra.NiCo2O4 decorated PANI-CNTs composites as supercapacitive electrode materials[J]. 能源化学(英文), 2017,26(1): 175-181
[9] Yizhi Xiang, Norbert Kruse.Cobalt-copper based catalysts for higher terminal alcohols synthesis via Fischer-Tropsch reaction[J]. 能源化学(英文), 2016,25(6): 895-906
[10] Jacques C. Vedrine.Heterogeneous catalytic partial oxidation of lower alkanes (C1-C6) on mixed metal oxides[J]. 能源化学(英文), 2016,25(6): 936-946
[11] Abigail Rozenblit, Adam J. Avoian, Qiaohua Tan, Tawan Sooknoi, Daniel E. Resasco.Reaction mechanism of aqueous-phase conversion of γ-valerolactone (GVL) over a Ru/C catalyst[J]. 能源化学(英文), 2016,25(6): 1008-1014
[12] Panpan Yang, Qineng Xia, Xiaohui Liu, Yanqin Wang.High-yield production of 2,5-dimethylfuran from 5-hydroxymethylfurfural over carbon supported Ni-Co bimetallic catalyst[J]. 能源化学(英文), 2016,25(6): 1015-1020
[13] Chunmiao Jia, Jiajian Gao, Yihu Dai, Jia Zhang, Yanhui Yang.The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process[J]. 能源化学(英文), 2016,25(6): 1027-1037
[14] Le He, Xiaoxiao Gong, Linmin Ye, Xinping Duan, Youzhu Yuan.Synergistic effects of bimetallic Cu-Fe/SiO2 nanocatalysts in selective hydrogenation of diethyl malonate to 1,3-propanediol[J]. 能源化学(英文), 2016,25(6): 1038-1044
[15] Min Chen, Zhanglong Guo, Jian Zheng, Fangli Jing, Wei Chu.CO2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase & treatment impact[J]. 能源化学(英文), 2016,25(6): 1070-1077
Copyright 2010 by 能源化学(英文)