? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :49-55    DOI: 10.1016/j.jechem.2016.10.001
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors
Yumei Hua, Maocheng Liua,b, Qingqing Yanga, Lingbin Kongb, Long Kangb
a State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;
b School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 Co-P precursor was prepared by a mechanical alloying method and then is controlled to synthesis of CoP phase through an annealing method. The optimal conditions of ball milling and annealing temperature are investigated. The CoP exhibits higher electrical conductivity than graphite and cobalt oxide, showing excellent pseudocapacitive properties due its high electrical conductivity which can result in a fast electron transfer in high rate charge-discharge possess. The as-obtained CoP electrode achieves a high specific capacitance of 447.5 F/g at 1 A/g, and displays an excellent rate capability as well as good cycling stability. Besides, the asymmetric supercapacitor (ASC) based on the CoP as the positive electrode and activated carbon (AC) as the negative electrode was assembled and displayed a high rate capability (60% of the capacitance is retained when the current density increased from 1 A/g to 12 A/g), excellent cycling stability (96.7% of the initial capacitance is retained after 5000 cycles), and a superior specific energy of 19 Wh/kg at a power density of 350.8 W/kg. The results suggest that the CoP electrode materials have a great potential for developing high-performance electrochemical energy storage devices.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词CoP   High electrical conductivity   Pseudocapacitive properties   Asymmetric supercapacitor     
收稿日期: 2016-06-08; 发布日期: 2016-10-19
基金资助:

This work was supported by the National Natural Science Foundation of China (no. 21403099), the Natural Science Foundation of Gansu Province (no. 145RJZA193), and the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (no. SKLAB02014005). Although this project is supported by three funds, there is no conflict of interest between each other.

通讯作者 Maocheng Liu     Email: liumc@lut.cn
引用本文:   
.Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors[J]  能源化学(英文) , 2017,V26(1): 49-55
.Facile synthesis of high electrical conductive CoP via solid-state synthetic routes for supercapacitors[J]  Journal of Energy Chemistry, 2017,V26(1): 49-55
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.10.001     或     http://www.jenergchem.org/CN/Y2017/V26/I1/49
 
[1] F.D. Madeleine, W.D. Scott, Electrochim. Acta 167(2015) 268-277.
[2] J.T. Zhang, X.S. Zhao, Chemsuschem 5(2012) 818-841.
[3] Z.Y. Li, M.S. Akhtar, O.B. Yang, J. Alloys Compd. 653(2015) 212-218.
[4] C.H. Ng, H.N. Lim, S. Hayase, I. Harrison, A. Pandikumar, N.M. Huang, J. Power Sources 296(2015) 169-185.
[5] Z.Q. Niu, L. Zhang, L.L. Liu, B.W. Zhu, H.B. Dong, X.D. Chen, Adv. Mater. 25(2013) 4035-4042.
[6] S.J. Patil, R.N. Bulakhe, C.D. Lokhande, Chempluschem 80(2015) 1478-1487.
[7] J.W. Lang, X.B. Yan, Q.J. Xue, J. Power Sources 196(2011) 7841-7846.
[8] P.X. Li, Y.B. Yang, E.Z. Shi, Q.C. Shen, Y.Y. Shang, S.T. Wu, J.Q. Wei, K.L. Wang, H.W. Zhu, Q. Yuan, A.Y. Cao, D.H. Wu, ACS Appl. Mater. Interfaces 6(2014) 5228-5234.
[9] H.C. Chen, S. Chen, M.Q. Fan, C. Li, D. Chen, G.L. Tian, K.Y. Shu, J. Mater. Chem. A 3(2015) 23653-23659.
[10] P.P. Xu, K. Ye, D.X. Cao, J.C. Huang, T. Liu, K. Cheng, J.L. Yin, G.L. Wang, J. Power Sources 268(2014) 204-207.
[11] J. Kang, A. Hirata, L. Kang, X. Zhang, Y. Hou, L. Chen, C. Li, T. Fujita, K. Akagi, M. Chen, Angew. Chem. Int. Ed. 52(2013) 1664-1667.
[12] H.C. Chen, J.J. Jiang, L. Zhang, H.Z. Wan, T. Qi, D.D. Xia, Nanoscale 5(2013) 8879-8883.
[13] G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, M. Srinivasan, J. Mater. Chem. 20(2010) 6720-6725.
[14] M. Zhou, F. Lu, X.S. Shen, W.W. Xia, H. He, X.H. Zeng, J. Mater. Chem. A 3(2015) 21201-21210.
[15] J. Zhang, J.P. Cheng, M. Li, L. Liu, F. Liu, X.B. Zhang, J. Electroanal. Chem. 743(2015) 38-45.
[16] X.H. Xiong, Z.X. Wang, H.J. Guo, X.H. Li, Mater. Lett. 138(2015) 5-8.
[17] W.A. Christinelli, R. Gonçalves, E.C. Pereira, J. Power Sources 303(2016) 73-80.
[18] W. Yu, X. Jiang, S. Ding, B.Q. Li, J. Power Sources 256(2014) 440-448.
[19] M. Huang, Y.X. Zhang, F. Li, L.L. Zhang, Z.Y. Wen, Q. Liu, J. Power Sources 252(2014) 98-106.
[20] D. Wang, L.B. Kong, M.C. Liu, Y.C. Luo, L. Kang, Chem. Eur. J. 21(2015) 1-8.
[21] X.J. Chen, M. Cheng, D. Chen, R.M. Wang, ACS Appl. Mater. Interfaces 8(2016) 3892-3900.
[22] Y. Xie, H.L. Su, X.F. Qian, X.M. Liu, Y.T. Qian, J. Solid State Chem. 149(2000) 88-91.
[23] N. Zhang, A.X. Shan, R.M. Wang, C.P. Chen, Crystengcomm 14(2012) 1197-1200.
[24] H.C. Chen, J.J. Jiang, Y.D. Zhao, L. Zhang, D.Q. Guo, D.D. Xia, J. Mater. Chem. A 3(2015) 428-437.
[25] Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, F.F. Xu, Appl. Surf. Sci. 347(2015) 690-695.
[26] Y. Shi, Y. Xu, S. Zhuo, J. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 7(2015) 2376-2384.
[27] W.M. Du, S.H. Wei, K.K. Zhou, J.J. Guo, H. Pang, X.F. Qian, Mater. Res. Bull. 61(2015) 333-339.
[28] K. Zhou, W.J. Zhou, L.J. Yang, J. Lu, S. Cheng, W.J. Mai, Z.H. Tang, L.G. Li, S.W. Chen, Adv. Funct. Mater. 25(2015) 7530-7538.
[29] L.Y. Niu, Y.D. Wang, F.P. Ruan, C. Shen, S. Shan, M. Xu, Z.K. Sun, C. Li, X.J. Liu, Y.Y. Gong, J. Mater. Chem. A 4(2016) 5669-5677.
[30] Y. Zhu, Z. Wu, M. Jing, X. Yang, W. Song, X. Ji, J. Power Sources 273(2015) 584-590.
[31] L. Shen, J. Wang, G. Xu, H. Li, H. Dou, X. Zhang, Adv. Energy Mater. 5(2015) 1400977.
[32] C.Y. Lee, Z.X. Su, K.Y. Lee, H. Tsuchiya, P. Schmuki, Chem. Commun. 50(2014) 7067-7070.
[33] R.G. Ma, Y. Zhou, L. Yao, G.H. Liu, Z.Z. Zhou, J.M. Lee, J.C. Wang, Q. Liu, J. Power Sources 30(2016) 49-56.
[34] Z.H. Wang, Q. Sha, F.W. Zhang, J. Pu, W. Zhang, Crystengcomm 15(2013) 5928-5934.
[35] N. Yu, M.Q. Zhu, D. Chen, J. Mater. Chem. A 3(2015) 7910-7918.
[36] Y. Fang, B. Luo, Y.Y. Jia, X.G. Li, B. Wang, Q. Song, F.Y. Kang, L.J. Zhi, Adv. Mater. 24(2012) 6348-6355.
[37] Y. Yoon, K. Lee, C. Baik, H. Yoo, M. Min, Y. Park, S.M. Lee, H. Lee, Adv. Mater. 25(2013) 4437-4444.
[38] J.J. Li, M.C. Liu, L.B. Kong, M. Shi, W. Han, L. Kang, Mater. Lett. 161(2015) 404-407.
[39] W. Kong, C. Lu, W. Zhang, J. Pu, Z. Wang, J. Mater. Chem. A 3(2015) 12452-12460.
[40] C. Tang, Z. Tang, H. Gong, J. Electrochem. Soc. 159(2012) 651-656.
[1] Chaitra K, Vinny R T, Sivaraman P, Narendra Reddy, Chunyan Hu, Krishna Venkatesh, Vivek C S, Nagaraju N, Kathyayini N.KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor[J]. 能源化学(英文), 2017,26(1): 56-62
[2] Vishwa Bhatt, Brijesh Tripathi, Pankaj Yadav, Manoj Kumar.Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination[J]. 能源化学(英文), 2017,26(1): 72-80
[3] Yizhi Xiang, Norbert Kruse.Cobalt-copper based catalysts for higher terminal alcohols synthesis via Fischer-Tropsch reaction[J]. 能源化学(英文), 2016,25(6): 895-906
[4] K. Chaitra, P. Sivaraman, R. T. Vinny, Umananda M. Bhatta, N. Nagaraju, N. Kathyayini.High energy density performance of hydrothermally produced hydrous ruthenium oxide/multiwalled carbon nanotubes composite: Design of an asymmetric supercapacitor with excellent cycle life[J]. 能源化学(英文), 2016,25(4): 627-635
[5] Maocheng Liu, Jiajia Li, Wei Han, Long Kang.Simple synthesis of novel phosphate electrode materials with unique microstructure and enhanced supercapacitive properties[J]. 能源化学(英文), 2016,25(4): 601-608
[6] Saskia Buller, Marius Heise-Podleska, Norbert Pfänder, Marc Willinger, Robert Schlögl.Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: Influences of pre-treatment procedures[J]. 能源化学(英文), 2016,25(2): 265-271
[7] B. Shruthi, B. J. Madhu, V. Bheema Raju.Influence of TiO2 on the electrochemical performance of pasted type β-nickel hydroxide electrode in alkaline electrolyte[J]. 能源化学(英文), 2016,25(1): 41-48
[8] M. Riad, S. Mikhail.Effect of support modification on the characterization and catalytic activity of Mo/Al2O3 catalysts[J]. 能源化学(英文), 2015,24(4): 520-528
[9] M. Riad, S. Mikhail.Effect of support modification on the characterization and catalytic activity of Mo/Al2O3 catalysts[J]. 能源化学(英文), 2015,21(4): 520-528
[10] Xin Zhuang, Yingjia Liu, Jian Chen, Hao Chen, Baolian Yi.Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode[J]. 能源化学(英文), 2014,23(3): 391-396
[11] Rafik Benrabaa, Hamza Boukhlouf, Axel L?fberg, Annick Rubbens, Rose-N?elle Vanni.Nickel ferrite spinel as catalyst precursor in the dry reforming of methane: Synthesis, characterization and catalytic properties[J]. 能源化学(英文), 2012,21(5): 595-604
[12] Bo Zhang, Shengguo Hui, Suhua Zhang, Yang Ji, Wei Li, Dingye Fang* .Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. 能源化学(英文), 2012,21(5): 563-570
[13] Huili Liu, Jianhang Hu*, Hua Wang, Chao Wang, Juanqin Li .Experimental studies of biomass gasification with air[J]. 能源化学(英文), 2012,21(4): 374-380
[14] ElisabeteMoreira Assaf Maluf.Effects of the Partial Replacement of La in La2-xMxCuO4 Perovskites on Catalysis of the Water-Gas Shift Reaction [J]. 能源化学(英文), 2010,19(6): 0-0
[15] Lili Wang, Wen Ding, Yingwei Liu, Weiping Fang, Yiquan Yang .Effect of preparation methods of aluminum emulsions on catalytic performance of copper-based catalysts for methanol synthesis from syngas[J]. 能源化学(英文), 2010,19(5): 487-492
Copyright 2010 by 能源化学(英文)