? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :56-62    DOI: 10.1016/j.jechem.2016.07.003
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor
Chaitra Ka,d, Vinny R Ta, Sivaraman Pb, Narendra Reddya, Chunyan Hue,f, Krishna Venkatesha, Vivek C Sa, Nagaraju Nc, Kathyayini Na
a Department of Nanobiosciences, Centre for Emerging Technologies, Jain Global Campus, Jain University, Jakkasandra post, Kanakapura Taluk, Ramanagara District, Bangalore Rural 562112 Karnataka, India;
b Naval Materials Research Laboratory, DRDO, Ambernath, Thane 421506, India;
c Department of Chemistry, St. Joseph's College P. G. Centre. 46, Langford Road, Shanthinagar, Bangalore, Karnataka 560027, India;
d Research Resource Centre, Visveswaraya Technological University, Belagavi, India;
e College of Chemistry, Chemical Engineering and Biotechnology, Donghuaa University, Shanghai 201620, PR China;
f National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, PR China
Download: PDF (560KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 Here we demonstrate the fabrication, electrochemical performance and application of an asymmetric supercapacitor (AS) device constructed with β-Ni(OH)2/MWCNTs as positive electrode and KOH activated honeycomb-like porous carbon (K-PC) derived from banana fibers as negative electrode. Initially, the electrochemical performance of hydrothermally synthesized β-Ni(OH)2/MWCNTs nanocomposite and K-PC was studied in a three-electrode system using 1 M KOH. These materials exhibited a specific capacitance (Cs) of 1327 F/g and 324 F/g respectively at a scan rate of 10 mV/s. Further, the AS device i.e., β-Ni(OH)2/MWCNTs//K-PC in 1 M KOH solution, demonstrated a Cs of 156 F/g at scan rate of 10 mV/s in a broad cell voltage of 0-2.2 V. The device demonstrated a good rate capability by maintaining a Cs of 59 F/g even at high current density (25 A/g). The device also offered high energy density of 63 Wh/kg with maximum power density of 5.2 kW/kg. The AS device exhibited excellent cycle life with 100% capacitance retention at 5000th cycle at a high current density of 25 A/g. Two AS devices connected in series were employed for powering a pair of LEDs of different colors and also a mini fan.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Asymmetric supercapacitor device   Activated porous carbon   High energy density   Cyclability   Power source     
收稿日期: 2016-04-25; 发布日期: 2016-07-27
通讯作者 Kathyayini N     Email: nkathyayini45@gmail.com
引用本文:   
.KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor[J]  能源化学(英文) , 2017,V26(1): 56-62
.KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor[J]  Journal of Energy Chemistry, 2017,V26(1): 56-62
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.07.003     或     http://www.jenergchem.org/CN/Y2017/V26/I1/56
 
[1] M. Jayalakshmi, K. Balasubramanian, Int. J. Electrochem. Sci. 3(2008) 1196-1217.
[2] R. Kotz, M. Carlen, Electrochim. Acta 45(2000) 2483-2498.
[3] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, Fei Wei, Adv. Funct. Mater. 22(2012) 2632-2641.
[4] C. Zhao, W. Zheng, Front. Energy Res. 3(2015) 1-11.
[5] T. Chen, L. Dai, Mater. Today 16(2013) 272-280.
[6] J.P. Cheng, J. Zhang, F. Liu, RSC Adv 4(2014) 38893-388917.
[7] G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41(2012) 797-828.
[8] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2(2013) 213-234.
[9] Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan, Mater. Lett. 62(2008) 3884-3886.
[10] S. Zhu, W. Cen, L. Hao, J. Maa, L. Yu, H. Zheng, Y. Zhang, Mater. Lett. 135(2014) 11-14.
[11] P. Sun, Z. Deng, P. Yang, X. Yu, Y. Chen, Z. Liang, H. Meng, W. Xie, S. Tan, W. Mai, J. Mater. Chem. A 3(2015) 12076-12080.
[12] R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Nano Energy 11(2015) 211-218.
[13] K. Xiao, L.X. Ding, H. Chen, S Wang, X. Lu, H. Wang, J. Mater. Chem. A 4(2016) 372-378.
[14] B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, X. Dong, J. Mater. Chem. A 3(2015) 9565-9577.
[15] B. Chang, Y. Guo, Y. Li, B. Yang, RSC Adv 5(2015) 72019-72027.
[16] A. Divyashree, H. Gurumurthy, RSC Adv 5(2015) 88339-88352.
[17] V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, Sabu Thomas, B. Wei, J. Phys. Chem. C 111(2007) 7527-7531.
[18] Q. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F. Kang, Q.H. Yang, Nanoscale 6(2014) 13831-13837.
[19] Y. Li, N. Yu, P. Yan, Y. Li, X. Zhou, S. Chen, G. Wang, T. Wei, Z. Fan, J. Power Sources 300(2015) 309-317.
[20] P. Sennu, V. Aravindan, Y.S. Lee, J. Power Sources 306(2016) 248-257.
[21] Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang, B. Jiang, J. Electroanal. Chem. 763(2016) 90-96.
[22] K. Chaitra, N. Nagaraju, N. Kathyayini, Mater. Chem. Phys. 164(2015) 98-107.
[23] H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao, L. Wu, Electrochim. Acta 180(2015) 241-251.
[24] Y. Guo, S. Yang, K. Yu, J. Zhao, Z. Wang, H. Xu, Mater. Chem. Phys. 74(2002) 320-323.
[25] H. Kathyayini, I. Willems, A. Fonseca, J.B. Nagy, N. Nagaraju, Catal. Commun. 7(2006) 140-147.
[26] P. Tang, Y. Zhao, C. Xu, K. Ni, J. Solid State Electrochem. 17(2013) 1701-1710.
[27] R.T. Vinny, K. Chaitra, K. Venkatesh, N. Nagaraju, N. Kathyayini, J. Power Sources 309(2016) 212-220.
[28] W. Zhang, Y. Han, H. Zhang, S. Li, C. Wang, Int. J. Electrochem. Sci. 8(2013) 12719-12725.
[29] Z. Tang, C.H. Tang, H. Gong, Adv. Funct. Mater. 22(2012) 1272-1278.
[30] X. Li, Q. Li, Y. Wu, M. Rui, H. Zeng, ACS Appl, Mater. Interfaces 7(2015) 19316-19323.
[31] Z.H. Gao, H. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Electrochim. Acta 87(2013) 375-380.
[32] J. Huang, P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li, G. Wang, J. Power Sources 246(2014) 371-376.
[33] L. Sui, S. Tang, Y. Chen, Z. Dai, H. Huangfu, Z. Zhu, X. Qin, Y. Deng, G.M. Haarberg, Electrochim. Acta 182(2015) 1159-1165.
[34] L. Sui, S. Tang, Z. Dai, Z. Zhu, H. Huangfu, X. Qin, Y. Deng, G.M. Haarberg, New J. Chem. 39(2015) 9363-9371.
[35] H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo, X. Wang, J. Mater. Chem. A 3(2015) 19545-19555.
[36] Z.B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, Y.P. Wu, Mater. Res. Bull. 74(2016) 241-247.
[37] S. Vaquero, J. Palma, M. Anderson, R. Marcilla, Int. J. Electrochem. Sci. 8(2013) 10293-10307.
Copyright 2010 by 能源化学(英文)