能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :72-80    DOI: 10.1016/j.jechem.2016.09.006
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination
Vishwa Bhatta, Brijesh Tripathib, Pankaj Yadavc, Manoj Kumarb
a Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, India;
b Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007, India;
c Department of Electrical Engineering, Incheon National University, Incheon 406772, Republic of Korea
Download: PDF (859KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials. Due to intimately coupled charge separation and photo-catalytic processes, it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%. Recently there has been growing interest in an integrated photovoltaic-electrochemical (PV-EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition. But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV-EC system. In this paper a theoretical framework is introduced to model silicon-based integrated PV-EC device. The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV-EC water splitting system under varying temperature and illumination. The kinetic loss occurs in the range of 19.1%-27.9% and coupling loss takes place in the range of 5.45%-6.74% with respect to varying illumination in the range of 20-100 mW/cm2. Similarly, the effect of varying temperature has severe impact on the performance of the system, wherein the coupling loss occurs in the range of 0.84%-21.51% for the temperature variation from 25 to 50℃.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Polycrystalline silicon   Electrochemical cell   Electrochemical impedance spectroscopy   Integrated PV-EC system     
收稿日期: 2016-05-31; 发布日期: 2016-09-30
通讯作者 Manoj Kumar     Email: manoj.kumar@sse.pdpu.ac.in
引用本文:   
.Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination[J]  能源化学(英文) , 2017,V26(1): 72-80
.Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination[J]  Journal of Energy Chemistry, 2017,V26(1): 72-80
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.09.006     或     http://www.jenergchem.org/CN/Y2017/V26/I1/72
 
[1] S.S. Mao, S. Shen, L. Guo, Mater. Int. 22(2012) 522-534.
[2] N.S. Lewis, Fuel Cells Bull. 2013(2013) 12-15.
[3] M Schiller, Hydrogen energy storage:The Holy Grail for renewable energy grid integration, Fuel Cells Bulletin 2013(2013) 12-15.
[4] M. Becherif, H.S. Ramadan, K. Cabaret, F. Picard, N. Simoncini, O. Bethoux, Energy Procedia 74(2015) 371-380.
[5] O. Ehret, K. Bonhoff, Int. J. Hydrog. Energy 40(2015) 5526-5533.
[6] M. Sevilla, R. Mokaya, Energy Environ. Sci 7(2014) 1250-1280.
[7] H. Pan, Renew. Sustain. Energy Rev. 57(2016) 584-601.
[8] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110(2010) 6446-6473.
[9] J. Bolts, M.J. Wrighton, Phys. Chem. 80(1976) 2641-2645.
[10] M.A. Butler, D.S.J. Ginley, J. Mater. Sci. 15(1980) 1-19.
[11] Y. Lin, G. Yuan, S. Sheehan, S. Zhou, D. Wang, Energy Environ. Sci. 4(2011) 4862-4869.
[12] Y. Ling, Y. Li, Part. Part. Syst. Charact. 31(2014) 1113-1121.
[13] H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, A. Rothschild, J. Phys. Chem. Lett. 5(2014) 3330-3334.
[14] S. Chen, S.S. Thind, A. Chen, Electrochem. Commun. 63(2016) 10-17.
[15] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110(2010) 6446-6473.
[16] C. Carpetis, Int. J. Hydrog. Energy 7(1982) 287-310.
[17] E. Bilgen, Energy Convers. Manag. 42(2001) 1047-1057.
[18] B.S. Kwak, J. Chae, M. Kang, Appl. Energy 125(2014) 189-196.
[19] M.E. Oruc, A.V. Desai, P.J.A. Kenis, R.G. Nuzzo, Appl. Energy 164(2016) 294-302.
[20] A. Fujishima, K. Honda, Nature 238(1972) 37-38.
[21] J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Nano Lett. 10(2010) 478-483.
[22] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11(2011) 3026-3033.
[23] J.K. Cooper, Y. Ling, C. Longo, Y. Li, J.Z. Zhang, J. Phys. Chem. C 116(2012) 17360-17368.
[24] X.Y. Yang, A. Wolcott, G.M. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 9(2009) 2331-2336.
[25] G.M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 10(2010) 1088-1092.
[26] S. Xie, X. Lu, T. Zhai, W. Li, M. Yu, C. Liang, Y. Tong, J. Mater. Chem. 22(2012) 14272-14275.
[27] J.Z. Su, L.J. Guo, N.Z. Bao, C.A. Grimes, Nano Lett. 11(2011) 1928-1933.
[28] G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J.Z. Zhang, Y. Li, Energy Environ. Sci. 5(2012) 6180-6187.
[29] X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Chem. Commun. 47(2011) 5804-5806.
[30] K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, H. Sugihara, J. Phys. Chem. B 110(2006) 11352-11360.
[31] G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J.Z. Zhang, V. Lordi, C. Rocha Leao, Y. Li, J. Phys. Chem. C 117(2013) 10957-10964.
[32] K. Sivula, J. Phys. Chem. Lett. 4(2013) 1624-1633.
[33] J. Ding, Y. Yuan, J. Xu, J. Deng, J. Guo, J. Biomed. Nanotechnol. 5(2009) 521-527.
[34] D. Pradhan, S.K. Mohapatra, S. Tymen, M. Misra, K.T. Leung, Mater. Express 1(2011) 59-67.
[35] M. Zirak, O. Moradlou, M.R. Bayati, Y.T. Nien, A.Z. Moshfegh, Appl. Surf. Sci. 273(2013) 391-398.
[36] X. Zhang, K. Huo, L. Hu, P.K. Chu, Nanosci. Nanotechnol. Lett. 2(2010) 51-57.
[37] C.S. Enache, Characterization of Thin Film Photoanodes for Solar Water Splitting Ph.D. thesis, Universitatea Transilvania Bra?ov, 2012.
[38] F.E. Osterloh, B.A. Parkinson, MRS Bull. 36(2011) 17-22.
[39] O. Khaselev, J.A. Turner, Science 280(1998) 425-427.
[40] S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 133(2011) 1216-1219.
[41] B. Seger, A.B. Laursen, P.C.K. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff, Angew. Chem 51(2012) 9128-9131.
[42] O. Khaselev, J.A. Turner, Science 280(1998) 425-427.
[43] O. Khaselev, A. Bansal, J.A. Turner, Int. J. Hydrog. Energy 26(2001) 127-132.
[44] A. Nakamura, Y. Ota, K. Koike, Y. Hidaka, K. Nishioka, M. Sugiyama, K. Fujii, Appl. Phys. Express 8(2015) 107101-107104.
[45] S.Y. Reece, J.A. Hamel, K. Sung, T.D. Jarvi, A.J. Esswein, J.J.H. Pijpers, D.G. Nocera, Science 334(2011) 645-648.
[46] V. Cristino, S. Beradi, S. Caramori, R. Argazzi, S. Carli, L. Meda, A. Tacca, C.A. Bignozzi, Phys. Chem. Chem. Phys. 15(2013) 13083-13092.
[47] R.E. Rocheleu, E.L. Miller, A. Misra, Energy Fuels 12(1998) 3-10.
[48] T.J. Jacobsson, C. Platzer-Bjorkman, M. Edoff, T. Edvinsson, Int. J. Hydrog. Energy 38(2013) 15027-15035.
[49] T.J. Jacobsson, V. Fjallstrom, M. Sahlberg, M. Edoff, T.A. Edvinsson, Energy Environ. Sci. 6(2013) 3676-3683.
[50] J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Science 345(2014) 1593-1596.
[51] C.R. Cox, Earth-Abundant Water-Splitting Catalysts Coupled to Silicon Solar Cells for Solar-to-Fuels Conversion Ph.D. thesis, Harvard University, 2014.
[52] P. Yadav, B. Tripathi, M. Lokhande, M. Kumar, Solar Energy Mater. Solar Cells 112(2013) 65-72.
[53] H.L. Tsai, C.S. Tu, Y.J. Su, in:Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2008 October 22-24.
[54] D.J. Crain, S.E. Rock, J.E. Garland, D. Roy, Curr. Appl. Phys. 13(2013) 2087-2097.
[55] N. Kopidakis, E.A. Schiff, N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104(2000) 3930-3936.
[56] J.E. Garland, D.J. Crain, J.P. Zheng, C.M. Sulyma, D. Roy, Energy Environ. Sci. 4(2011) 485-498.
[57] O. Breitenstein, J. Bauer, A. Lotnyk, J.M. Wagner, Superlattice Microstruct. 45(2009) 182-189.
[58] D.J. Crain, J.E. Garland, S.E. Rock, D. Roy, Anal. Methods 4(2012) 106-117.
[59] P. Yadav, B. Tripathi, K. Pandey, M. Kumar, Phys. Chem. Chem. Phys. 16(2014) 15469-15476.
[60] R.L. LeRoy, Int. J. Hydrog. Energy 8(1983) 401-417.
[61] K. Zeng, D. Zhang, Science 36(2010) 307-326.
[62] G. Scheible, H. Solmecke, D. Hackstein, in:Proceedings of the International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, 1, 1998, pp. 475-480.
[63] Y Bicer, I Dincer, Int. J. Hydrog. Energy (2016) 1-10.
Copyright 2010 by 能源化学(英文)