? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :93-100    DOI: 10.1016/j.jechem.2016.08.001
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Carbon dioxide reforming of methane over mesoporous nickel aluminate/γ-alumina composites
Li Zhanga, Xueguang Wanga,b, Xingfu Shanga, Mingwu Tanb, Weizhong Dinga,b, Xionggang Lua
a State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China;
b Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 A series of xNiAl2O4/γ-Al2O3 composites with various Ni contents have been prepared via one-step partial hydrolysis of metal nitrate salts in the absence of surfactants and used for carbon dioxide reforming of methane. The characterization results demonstrated that the NiAl2O4/γ-Al2O3 materials possessed mesoporous structures of uniform pore sizes; and the Ni2+ ions were completely reacted with alumina to NiAl2O4 spinel in the matrices using N2 sorption, XRD, TEM, and XPS. The NiAl2O4/γ-Al2O3 materials exhibited excellent catalytic properties and superior long-term stability for carbon dioxide reforming of methane. The effects of Ni content on the intrinsic activities and the amounts of coke disposition of the xNiAl2O4/γ-Al2O3 catalysts were discussed in detail for the carbon dioxide reforming of methane. The results revealed that the Ni particle sizes did not affect the intrinsic activity of metallic Ni, but smaller Ni particles could reduce the rate of coke deposition.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Nickel aluminate   Mesoporous alumina   Nickel nanoparticle   Carbon dioxide   Methane reforming     
收稿日期: 2016-04-25; 发布日期: 2016-08-03
基金资助:

This work was supported by Innovation Program of Shanghai Municipal Education Commission, the Major State Basic Research Development Program of China (No. 2014CB643403), the National Science Fund for Distinguished Young Scholars (No. 51225401, 51574164) and the Basic Major Research Program of Science and Technology Commission Foundation of Shanghai (No. 14JC1491400).

通讯作者 Xueguang Wang, Xionggang Lu     Email: wxg228@shu.edu.cn;luxg@shu.edu.cn
引用本文:   
.Carbon dioxide reforming of methane over mesoporous nickel aluminate/γ-alumina composites[J]  能源化学(英文) , 2017,V26(1): 93-100
.Carbon dioxide reforming of methane over mesoporous nickel aluminate/γ-alumina composites[J]  Journal of Energy Chemistry, 2017,V26(1): 93-100
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.08.001     或     http://www.jenergchem.org/CN/Y2017/V26/I1/93
 
[1] M.S. Fan, A.Z. Abdullah, S. Bhatia, ChemSusChem 4(2011) 1643-1653.
[2] Y. Kathiraser, W. Thitsartarn, K. Sutthiumporn, S. Kawi, J. Phys. Chem. C 117(2013) 8120-8130.
[3] D. Baudouin, U. Rodemerck, F. Krumeich, A.D. Mallmann, K.C. Szeto, H. Ménard, L. Veyre, J. Candy, P.B. Webb, C. Thieuleux, C. Copéret, J. Catal. 297(2013) 27-34.
[4] P. Djinovi?, I.G.O. ?rnivec, B. Erjavec, A. Pintar, Appl. Catal. B 125(2012) 259-270.
[5] L.L. Xu, H.L. Song, L.J. Chou, ACS Catal 2(2012) 1331-1342.
[6] Z.C. Liu, J. Zhou, K. Cao, W.M. Yang, H.X. Gao, Y.D. Wang, H.X. Li, Appl. Catal. B 125(2012) 324-330.
[7] N. Wang, W.Z. Qian, W. Chu, F. Wei, Catal. Sci. Technol. 6(2016) 3594-3605.
[8] M.M. Nair, S. Kaliaguine, F. Kleitz, ACS Catal 4(2014) 3837-3846.
[9] S. Wang, G.Q. Lu, Energy Fuels 10(1996) 896-904.
[10] A.I. Tsyganok, T. Tsunoda, S. Hamakawa, K. Suzuki, K. Takehira, T. Hayakawa, J. Catal. 213(2003) 191-203.
[11] T.D. Gould, A. Izar, A.W. Weimer, J.L. Falconer, J.W. Medlin, ACS Catal 4(2014) 2714-2717.
[12] S. Kawi, Y. Kathiraser, J. Ni, U. Oemar, Z.W. Li, E.T. Saw, ChemSusChem 8(2015) 3556-3575.
[13] C.J. Liu, J.Y. Ye, J.J. Jiang, Y.X. Pan, ChemCatChem 3(2011) 529-541.
[14] K. Wang, X.J. Li, S.F. Ji, B.Y. Huang, C.Y. Li, ChemSusChem 1(2008) 527-533.
[15] T. Odedairo, J.L. Chen, Z.H. Zhu, J. Phys. Chem. C 117(2013) 21288-21302.
[16] S. Das, S. Thakur, A. Bag, M.S. Gupta, P. Mondal, A. Bordoloi, J. Catal. 330(2015) 46-60.
[17] W. Chen, G.F. Zhao, Q.X. Xue, L. Chen, Y. Lu, Appl. Catal. B 136-137(2013) 260-268.
[18] W. Chen, W.Q. Sheng, F.H. Cao, Y. Lu, Int. J. Hydrogen Energy 37(2012) 18021-18030.
[19] W. Chen, W.Q. Sheng, G.F. Zhao, F.H. Cao, Q.S. Xue, L. Chen, Y. Lu, RSC Adv 2(2012) 3651-3653.
[20] J. Kehres, J.G. Jakobsen, J.W. Andreasen, J.B. Wagner, H.H. Liu, A. Molenbroek, J. Sehested, I. Chorkendorff, T. Vegge, J. Phys. Chem. C 116(2012) 21407-21415.
[21] G. Jones, J.G. Jakobsen, S.S. Shim, J. Kleis, M.P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnenmann, J.R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested, J.K. Norskov, J. Catal. 259(2008) 147-160.
[22] V.C.H. Kroll, H.M. Swaan, C. Mirodatos, J. Catal. 161(1996) 409-422.
[23] M.J. Yu, Y.A. Zhu, Y. Lu, G.S. Tong, K.K. Zhu, X.G. Zhou, Appl. Catal. B 165(2015) 43-56.
[24] S.R. Li, J.L. Gong, Chem. Soc. Rev. 43(2014) 7245.
[25] X. Xie, T. Otremba, P. Littlewood, R. Schomacker, A. Thomas, ACS Catal 3(2013) 224.
[26] W.Y. Kim, Y.H. Lee, H. Park, Y.H. Choi, M.H. Lee, J.S. Lee, Catal. Sci. Technol. 6(2016) 2060-2064.
[27] C.Z. Wang, N.N. Sun, N. Zhao, W. Wei, Y.H. Sun, C.G. Sun, H. Liu, C.E. Snape, Fuel 143(2015) 527-535.
[28] R. Pereñiguez, V.M. Gonzalez-delaCruz, A. Caballero, J.P. Holgado, Appl. Catal. B 124(2012) 324-332123W22.
[29] J. Barbier, G. Corro, P. Marecot, J.P. Bournonville, J.P. Franck, React. Kinet. Catal. Lett. 28(1985) 245-250.
[30] T. Hayakawa, S. Suzuki, J. Nakamura, T. Uchijima, S. Hamakawa, K. Suzuki, T. Shishido, K. Takehira, Appl. Catal. A 183(1999) 273-283.
[31] R.K. Singha, A. Yadav, A. Agrawal, A. Shukla, S. Adak,T. Sasaki, R. Bal, Appl. Catal. B 191(2016) 165-178.
[32] E.C. Lovell, A. Fuller, J. Scott, R. Amal, Appl. Catal. B 199(2016) 155-165.
[33] T. Shishido, M. Sukenobu, H. Morioka, R. Furukawa, H. Shirahase, K. Takehira, Catal. Lett. 73(2001) 21-25.
[34] K. Takehira, T. Shishido, M. Kondo, J. Catal. 207(2002) 307-316.
[35] R. Shiozaki, A.G. Andersen, T. Hayakawa, S. Hamakawa, K. Suzaki, M. Shimizu, K. Takehira, J. Chem. Soc., Faraday Trans 93(1997) 3235-3242.
[36] T. Maneerung, K. Hidajat, S. Kawi, Catal. Today 171(2011) 24-35.
[37] Z. Huang, X.G. Wang, Z.Y. Wang, X.J. Zou, W.Z. Ding, X.G. Lu, RSC Adv 4(2014) 14829-14832.
[38] R. Pereñiguez, V.M. Gonzalez-delaCruz, J.P. Hogado, A. Caballero, Appl. Catal. B 93(2010) 346-353.
[39] Z.X. Xu, N. Wang, W. Chu, J. Deng, S.Z. Luo, Catal. Sci. Technol. 5(2015) 1588-1597.
[40] L. Zhou, L.D. Li, N.N. Wei, J. Li, J.M. Basset, ChemCatChem 7(2015) 208-216.
[41] N. Sahli, C. Petit, A.C. Roger, A. Kiennemann, S. Libs, M.M. Bettahar, Catal. Today 113(2006) 187-193.
[42] J. Yang, X.G. Wang, L. Li, K. Shen, X.G. Lu, W.Z. Ding, Appl. Catal. B 96(2010) 232-237.
[43] C. Jiménez-González, Z. Boukha, B.D. Rivas, J.R. González-Velasco, J.I. Gutiérrez-Ortiz, R. López-Fonseca, Energy Fuels 28(2014) 7109-7121.
[44] Y.H. Hu, E. Ruckenstein, Cat. Rev. -Sci. Eng. 44(2002) 423-453.
[45] V.R. Choudhary, B.S. Uphade, A.S. Mamman, J. Catal. 172(1997) 281-293.
[46] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, ACS Catal 3(2013) 1638-1651.
[47] L.L. Xu, H.L. Song, L.J. Chou, Appl. Catal. B 109(2011) 177-190108W22.
[48] L.L. Xu, Z.C. Miao, H.L. Song, L.J. Chou, Int. J. Hydrogen Energy 39(2014) 3253-3268.
[49] X. Huang, G.X. Xue, C.Z. Wang, N. Zhao, N.N. Sun, W. Wei, Y.H. Sun, Catal. Sci. Technol. 6(2016) 449-459.
[50] X.F. Shang, X.G. Wang, W.X. Nie, X.F. Guo, X.J. Zou, W.Z. Ding, X.G. Lu, J. Mater. Chem. 22(2012) 23806-23814.
[51] M.W. Tan, X.G. Wang, X.F. Shang, X.J. Zou, X.G. Lu, W.Z. Ding, J. Catal 314(2014) 117-131.
[52] M.W. Tan, X.G. Wang, X.X. Wang, X.J. Zou, W.Z. Ding, X.G. Lu, J. Catal. 329(2015) 151-166.
[53] D.L. Li, I. Atake, T. Shishido, Y. Oumi, T. Sano, K. Takehira, J. Catal. 250(2007) 299-312.
[54] K. Shen, X.G. Wang, X.J. Zou, X.X. Wang, X.G. Lu, W.Z. Ding, Int. J. Hydrogen Energy 36(2011) 4908-4916.
[55] K.F. Waldner, R.M. Laine, S. Dhumrongvaraporn, S. Tayaniphan, R. Narayanan, Chem. Mater. 8(1996) 2850-2857.
[56] J.J. Guo, H. Lou, H. Zhao, D.F. Chai, X.M. Zheng, Appl. Catal. A 273(2004) 75-82.
[57] M. Lenglet, F. Hochu, J. Durr, M.H. Tuilier, Solid State Commun 104(1997) 793-798.
[58] Y.H. Zhang, G.X. Xiong, S.S. Sheng, S.L. Liu, W.S. Yang, Acta Phys. Chim. Sin. 15(1999) 735-740.
[59] M.P. Gonzalez-Marcos, J.I. Gutierrez-Ortiz, C.G. de Elguea, J.A. Delgado, J.R. Gonzalez-Velasco, Appl. Catal. A 162(1997) 269-280.
[60] D.P. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna, Y.H. Yang, J. Catal. 266(2009) 380-390.
[61] Y.H. Wang, H.M. Liu, B.Q. Xu, J. Mol. Catal. A 299(2009) 44-52.
[62] F. Pompeo, N.N. Nichio, M.M.V.M. Souza, D.V. Cesar, O.A. Ferretti, M. Schmal, Appl. Catal. A 316(2007) 175-183.
[63] W.Q. Cai, J.G. Yu, C. Anand, A. Vinu, M. Jaroniec, Chem. Mater. 23(2011) 1147-1157.
[1] Bing Li, Zhenxin Xu, Fangli Jing, Shizhong Luo, Ning Wang, Wei Chu.Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides[J]. 能源化学(英文), 2016,25(6): 1078-1085
[2] Xiong Su, Jinghua Xu, Binglian Liang, Hongmin Duan, Baolin Hou, Yanqiang Huang.Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. 能源化学(英文), 2016,25(4): 553-565
[3] Wei Zhang, Tianhua Zhou, Jindui Hong, Rong Xu.MoS3 loaded TiO2 nanoplates for photocatalytic water and carbon dioxide reduction[J]. 能源化学(英文), 2016,25(3): 500-506
[4] Nobuhiro Ishito, Kenji Hara, Kiyotaka Nakajima, Atsushi Fukuoka.Selective synthesis of carbon monoxide via formates in reverse water-gas shift reaction over alumina-supported gold catalyst[J]. 能源化学(英文), 2016,25(2): 306-310
[5] Edith Berger, Maximilian W. Hahn, Thomas Przybilla, Benjamin Winter, Erdmann Spiecker, Andreas Jentys, Johannes A. Lercher.Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2 capture[J]. 能源化学(英文), 2016,25(2): 327-335
[6] Hui Su, Yuyang Li, Ping Li, Yongxiu Chen, Zhizhi Zhang, Xiangchen Fang.Simultaneous recovery of carbon and sulfur resources from reduction of CO2 with H2S using catalysts[J]. 能源化学(英文), 2016,25(1): 110-116
[7] Yongtao Qiu, Jizhong Ren, Dan Zhao, Hui Li, Maicun Deng.Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation[J]. 能源化学(英文), 2016,25(1): 122-130
[8] Jiaquan Hu, Zhanglong Guo, Wei Chu, Le Li, Tao Lin.Carbon dioxide catalytic conversion to nano carbon material on the iron-nickel catalysts using CVD-IP method[J]. 能源化学(英文), 2015,24(5): 620-625
[9] Xiang Wu, Sufang Wu.Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol[J]. 能源化学(英文), 2015,24(3): 315-321
[10] Gongda Zhao, Yi Zhang, Hengyun Zhang, Jun Li, Shuang Gao.Direct synthesis of propylene carbonate from propylene and carbon dioxide catalyzed by quaternary ammonium heteropolyphosphatotungstate-TBAB system[J]. 能源化学(英文), 2015,24(3): 353-358
[11] Zhi Hua Lee, Satoshi Ichikawa, Keat Teong Lee, Abdul Rahman Mohamed.The role of nickel oxide additive in lowering the carbon dioxide sorption temperature of CaO[J]. 能源化学(英文), 2015,24(2): 225-231
[12] Mohsen Abbasi, Mehdi Farniaei, Mohammad Reza Rahimpour, Alireza Shariati.Simultaneous syngas production with different H2/CO ratio in a multi-tubular methane steam and dry reformer by utilizing of CLC[J]. 能源化学(英文), 2015,24(1): 54-64
[13] Xiuxiu Bao, Meng Kong, Wen Lu, Jinhua Fei, Xiaoming Zheng.Performance of Co/MgO catalyst for CO2 reforming of toluene as a model compound of tar derived from biomass gasification[J]. 能源化学(英文), 2014,23(6): 795-800
[14] Dunfeng Gao, Fan Cai, Qinqin Xu, Guoxiong Wang, Xiulian Pan, Xinhe Bao.Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane[J]. 能源化学(英文), 2014,23(6): 694-700
[15] Lizhi Yi, Deqing Liang, Xuebing Zhou, Dongliang Li.Molecular dynamics simulations for the growth of CH4-CO2 mixed hydrate[J]. 能源化学(英文), 2014,23(6): 747-754
Copyright 2010 by 能源化学(英文)