? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :101-114    DOI: 10.1016/j.jechem.2016.08.006
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Synthesis and electrochemical properties of dual doped spinels LiNixAlyMn2-x-yO4 via facile novel chelated sol-gel method as possible cathode material for lithium rechargeable batteries
R. Thirunakarana, Gil Hwan Lewb, Won-Sub Yoonb
a CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India;
b Sungkyunkwan University, Department of Energy Science, Suwon-Si, Gyeonggi-do 440-746, Republic of Korea
Download: PDF (1135KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 LiMn2O4 and LiNixAly Mn2-x-yO4 (x=0.50; y=0.05-0.50) powders have been synthesized via facile sol-gel method using Behenic acid as active chelating agent. The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and electrochemical studies viz., galvanostatic cycling properties, electrochemical impedance spectroscopy (EIS) and differential capacity curves (dQ/dE). Finger print XRD patterns of LiMn2O4 and LiNixAlyMn2-x-yO4 fortify the high degree of crystallinity with better phase purity. FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth (50 nm) with ice-cube surface morphology. TEM images of the spinel LiMn2O4 shows the uniform spherical morphology with particle size of (100 nm) while low level of Al-doping spinel (LiNi0.5Al0.05Mn1.45O4) displaying cloudy particles with agglomerated particles of (50 nm). The LiMn2O4 samples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94% columbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles. Among all four dopant compositions investigated, LiNi0.5Al0.05Mn1.45O4 delivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle (capacity retention of 92%) over the investigated 10 cycles. Electrochemical impedance studies of spinel LiMn2O4 and LiNi0.5Al0.05Mn1.45O4 depict the high and low real polarization of 1562 and 1100 Ω.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Multi-doping   Sol-gel method   Behenic acid   Differential capacity   Spinel cathode     
收稿日期: 2016-07-06; 发布日期: 2016-08-28
基金资助:

this work was supported by the Human Resources Development Program (No. 20124010203270) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy. Many thanks are to the students of Professor for their co-operative helps and Cooperative Center for Research Facilities (CCRF) for completion of all physical characterization studies during my fellowship at Sungkyunkwan University (SKKU), South Korea.

通讯作者 R. Thirunakaran, Won-Sub Yoon     Email: rthirunakaran@yahoo.com;wsyoon@skku.edu
引用本文:   
.Synthesis and electrochemical properties of dual doped spinels LiNixAlyMn2-x-yO4 via facile novel chelated sol-gel method as possible cathode material for lithium rechargeable batteries[J]  能源化学(英文) , 2017,V26(1): 101-114
.Synthesis and electrochemical properties of dual doped spinels LiNixAlyMn2-x-yO4 via facile novel chelated sol-gel method as possible cathode material for lithium rechargeable batteries[J]  Journal of Energy Chemistry, 2017,V26(1): 101-114
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.08.006     或     http://www.jenergchem.org/CN/Y2017/V26/I1/101
 
[1] J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowmer, G. Amatucci, D. Guyomard, J. Electrochem. Soc. 141(6) (1994) 1421-1431.
[2] R.J. Gummow, A. de Kock, M.M. Thackeray, Solid State Ionics 69(1994) 59-67.
[3] M.M. Thackeray, A. de Kock, M.H. Rossouw, D. Liles, R. Bittihn, D. Hoge, J. Electrochem. Soc. 139(2) (1992) 363-366.
[4] Y. Xia, Y. Zhou, M. Yoshio, J. Electrochem. Soc. 144(8) (1997) 2593-2600.
[5] G. Pistoia, A. Antonini, R. Rosati, D. Zane, Electrochim. Acta 41(1996) 2683-2689.
[6] D.H. Jang, Y.J. Shin, S.M. Oh, J. Electrochem. Soc. 143(7) (1996) 2204-2211.
[7] A. Yamada, Lattice instability in Li (LixMn2-x)O4, J. Solid State Chem. 122(1996) 160-165.
[8] T. Ohuzuku, S. Takeda, M. Wakihara, J. Power Sources 90(1999) 90-94.
[9] D. Song, H. Ikuta, T. Uchida, M. Wakihara, Solid State Ionics 117(1999) 151-156.
[10] M.J. Iqual, S. Zahoor, J. Power Sources 65(2007) 393-397.
[11] J.H. Lee, J.K. Hong, D.H. Jang, Y.K. Sun, M. Seung, J. Power Sources 89(2000) 7-14.
[12] S.H. Park, K.S. Park, Y.K. Sun, K.S. Nahm, J. Electrochem. Soc. 147(6) (2000) 2116-2121.
[13] S. Bach, M. Henry, N. Baffier, J. Livage, J. Solid State Chem. 88(1990) 325-333.
[14] J.P.P. Ramos, J. Power Sources 54(1995) 120-126.
[15] P. Barboux, J.M. Tarascon, F.K. Shokoohi, J. Solid State Chem. 91(1991) 185-196.
[16] W. Liu, G.C. Farrington, F. Chaput, B. Dunn, J. Electrochem. Soc. 143(3) (1996) 879-884.
[17] R. Thirunakaran, N. Kalaiselvi, P. Periasamy, B. Rameshbabu, N.G. Renganathan, N. Muniyandi, M. Raghavan, Ionics 7(2001) 187-191.
[18] W.H. Jang, M.C. Kim, S.H. Kim, V. Aravindan, W.S. Kim, W.S. Yoon, Y.S. Lee, Electrochim. Acta 137(2014) 404-410.
[19] Z. Wang, J. Du, Z Li, Z. Wu, Sol-gel synthesis of Co-doped LiMn2O4 with improved high-rate properties for high-temperature lithium batteries, Ceramics Inter. 40(2014) 3527-3531.
[20] S. Guo, S. Zhang, X. He, W. Pu, C. Jiang, C. Wan, J. Electrochem. Soc. 155(10) (2008) A760-A763.
[21] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill, D.H. Gregory, J. Phys. Chem. Solids 69(2008) 2082-2092.
[22] A. Veluchamy, H. Ikuta, M. Wakihara, Solid State Ionics 143(2001) 161-171.
[23] G.T.K. Fey, C.Z. Lu, T. Prem kumar, Mater. Chem. Phys. 80(2003) 309-318.
[24] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, R. Rajalakshimi, J. Power Sources 187(2009) 565-574.
[25] R. Thirunakaran, K.T. Kim, Y.M. Kang, C.Y. Seo, J.Y. Lee, J. Power Sources 137(2004) 100-104.
[26] R. Thirunakaran, K.T. Kim, Y.M. Kang, C.Y. Seo, J.Y. Lee, Mater. Res. Bull 40(2005) 177-186.
[27] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill, D.H. Gregory, J. Mater. Process. Technol. 208(2008) 520-531.
[28] R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, C.W. Dunnill, D.H. Gregory, Mater. Res. Bull 43(2008) 2119-2129.
[29] C. Penga, J. Huanga, Y. Guoa, Q. Lia, H. Baia, Y. Hea, C. Sua, J. Guoa, Vacuum 120(Part A) (2015) 121-126.
[30] N. Amdouni, K. Zaghib, R. Gendron, A. Mauger, C.M. Julien, Ionics 12(2006) 117-126.
[31] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, J. Electrochem. Soc. 157(3) (2010) A333-A339.
[32] Y.S. Lee, Y.K. Sun, K.S. Nahma, Solid State Ionics 109(1998) 285-294.
[33] J. Liu, Z. Sun, J. Xie, H. Chen, N. Wu, B. Wu, J. Power Sources 240(2013) 95-100.
[34] Z. Yang, Y. Jiang, J.H. Kim, Y. Wu, G.L. Li, Y.H. Huang, Electrochim. Acta 117(2014) 76-83.
[35] K.S. Lee, H.J. Banga, S.T. Myungb, J. Prakash, K. Amined, Y.K. Suna, J. Power Sources 174(2007) 726-729.
[36] Y. Lee, J. Mun, D.W. Kim, J.K. Lee, W. Choi, Electrochim. Acta 115(2014) 326-331.
[37] Y.P. Wu, K. Rahm, R. Holze, Electrochim. Acta 47(2002) 3491-3507.
[38] M.A. Kebede, N. Kunjuzwa, C.J. Jafta, M.K. Mathe, K.I. Ozoemena, Electrochim. Acta 128(2014) 172-177.
[39] A.B. Yuan, L. Tian, W.M. Xu, Y.Q. Wang, J. Power Sources 195(2010) 5032-5038.
Copyright 2010 by 能源化学(英文)