? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :139-146    DOI: 10.1016/j.jechem.2016.09.011
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline
Tingjun Fu, Jiangwei Chang, Juan Shao, Zhong Li
Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nanosized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T=405℃, WHSV=4.74 h-1 and P=1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m2/g, larger than that of mesoporous ZSM-5 (66 m2/g) and nanosized ZSM-5 (76 m2/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5 (86 h), but shorter than that of nanosized ZSM-5 (104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词ZSM-5   Crystal size   Mesopore   Acidity   Methanol to gasoline     
收稿日期: 2016-05-30; 发布日期: 2016-10-03
基金资助:

We gratefully appreciate the Science and Technology Foundation Platform Construction Project of Shanxi Province (No. 2015091009), the National Science Foundation for Young Scientists of China (No. 21606160), the Qualified Personnel Foundation of Taiyuan University of Technology (No. tyut-rc201454a) and School Fund of Taiyuan University of Technology (Nos. 1205-04020202 and 1205-04020102).

通讯作者 Zhong Li     Email: lizhong@tyut.edu.cn
引用本文:   
.Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline[J]  能源化学(英文) , 2017,V26(1): 139-146
.Fabrication of a nano-sized ZSM-5 zeolite with intercrystalline mesopores for conversion of methanol to gasoline[J]  Journal of Energy Chemistry, 2017,V26(1): 139-146
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.09.011     或     http://www.jenergchem.org/CN/Y2017/V26/I1/139
 
[1] G. Busca, Chem. Rev. 107(2007) 5366-5410.
[2] A. Corma, Chem. Rev. 97(1997) 2373-2420.
[3] Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, Nat. Commun. 4(2013) 1805.
[4] X. Wang, X. Gao, M. Dong, H. Zhao, W. Huang, J. Energy Chem. 24(2015) 490-496.
[5] Y.L. Cao, H.X. Yang, X.P. Ai, L.F. Xiao, J. Electroanal. Chem. 557(2003) 127-134.
[6] I. Roche, E. Chaînet, M. Chatenet, J Vondrák, J. Phys. Chem. C 111(2007) 1434-1443.
[7] G. Li, M.A. Mezaal, K. Zhang, L. Lei, Int. J. Electrochem. Sci 10(2015) 5395-5404.
[8] M. Minakshi, D.R.G. Mitchell, J. Appl. Electrochem. 39(2009) 1-5.
[9] T. Shoji, T. Yamamoto, J. Electroanal. Chem. 362(1993) 153-157.
[10] K. Kumeta, I. Nagashima, S. Matsui, K. Mizoguchi, J. Appl. Polym. Sci. 90(2003) 2420-2427.
[11] G.M. Wu, S.J. Lin, C.C. Yang, J. Membr. Sci. 275(2006) 127-133.
[12] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Angew. Chem. Int. Ed. 51(2012) 5810-5831.
[13] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106(2006) 896-910.
[14] K. Egeblad, C.H. Christensen, M. Kustova, C.H. Christensen, Chem. Mater. 20(2008) 946-960.
[15] A. Petushkov, S. Yoon, S.C. Larsen, Microporous Mesoporous Mater. 137(2011) 92-100.
[16] T.Q. Hoang, X. Zhu, L.L. Lobban, D.E. Resasco, R.G. Mallinson, Catal. Commun. 11(2010) 977-981.
[17] T.V.W. Janssens, J. Catal. 264(2009) 130-137.
[18] A.A. Rownaghi, J. Hedlund, Ind. Eng. Chem. Res. 50(2011) 11872-11878.
[19] M. Firoozi, M. Baghalha, M. Asadi, Catal. Commun. 10(2009) 1582-1585.
[20] S. Fathi, M. Sohrabi, C. Falamaki, Fuel 116(2014) 529-537.
[21] M. Bjørgen, F. Joensen, M. Spangsberg Holm, U. Olsbye, K.-P. Lillerud, S. Svelle, Appl. Catal. A 345(2008) 43-50.
[22] Y. Song, C. Sun, W. Shen, L. Lin, Catal. Lett. 109(2006) 21-24.
[23] J.C. Groen, T. Bach, U. Ziese, A.M. Paulaime-van Donk, K.P. de Jong, J.A. Moulijn, J. Pérez-Ramírez, J. Am. Chem. Soc. 127(2005) 10792-10793.
[24] H. Zhang, Z. Hu, L. Huang, H. Zhang, K. Song, L. Wang, Z. Shi, J. Ma, Y. Zhuang, W. Shen, Y. Zhang, H. Xu, Y. Tang, ACS Catal. 5(2015) 2548-2558.
[25] H. Zhang, Y. Ma, K. Song, Y. Zhang, Y. Tang, J. Catal. 302(2013) 115-125.
[26] D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez, A. Peral, J. Catal. 276(2010) 152-160.
[27] H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba, J.N. Kondo, T. Tatsumi, Microporous Mesoporous Mater. 145(2011) 165-171.
[28] A.E. Persson, B.J. Schoeman, J. Sterte, J.E. Otterstedt, Zeolites 14(1994) 557-567.
[29] E.G. Derouane, S. Determmerie, Z. Gabelica, N. Blom, Appl. Catal. 1(1981) 201-224.
[30] S.C. Larsen, J. Phys. Chem. C 111(2007) 18464-18474.
[31] W. Song, R.E. Justice, C.A. Jones, V.H. Grassian, S.C. Larsen, Langmuir 20(2004) 4696-4702.
[32] H. Zhu, Z. Liu, D. Kong, Y. Wang, X. Yuan, Z. Xie, J. Colloid Interface Sci. 331(2009) 432-438.
[33] Q. Wang, S. Xu, J. Chen, Y. Wei, J. Li, D. Fan, Z. Yu, Y. Qi, Y. He, S. Xu, C. Yuan, Y. Zhou, J. Wang, M. Zhang, B. Su, Z. Liu, RSC Adv. 4(2014) 21479-21491.
[34] H. Zhu, Z. Liu, D. Kong, Y. Wang, Z. Xie, J. Phys. Chem. C 112(2008) 17257-17264.
[35] K. Tarach, K. Góra-Marek, J. Tekla, K. Brylewska, J. Datka, K. MLekodaj, W. Makowski, M.C. Igualada López, J. Martínez Triguero, F. Rey, J. Catal. 312(2014) 46-57.
[36] G.Q. Zhang, T. Bai, T.F. Chen, W.T. Fan, X. Zhang, Ind. Eng. Chem. Res. 53(2014) 14932-14940.
[37] J. Li, Y. Wang, W. Jia, Z. Xi, H. Chen, Z. Zhu, Z. Hu, J. Energy. Chem 23(2014) 771-780.
[38] Y. Wsang, R. Zheng, Y. Qin, J. Peng, M. Li, J. Lei, Y. Wu, M. Hu, S. Shuai, Fuel 166(2016) 543-552.
[1] Ting Bai, Xin Zhang, Feng Wang, Wenting Qu, Xiling Liu, Chao Duan.Coking behaviors and kinetics on HZSM-5/SAPO-34 catalysts for conversion of ethanol to propylene[J]. 能源化学(英文), 2016,25(3): 545-552
[2] Yindi Zhang, Ping Chen, Hui Lou.In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM-5[J]. 能源化学(英文), 2016,25(3): 427-433
[3] Miao Zhang, Lei Wang, Yujing Chen, Qiumin Zhang, Changhai Liang.Creating mesopores in ZSM-48 zeolite by alkali treatment: Enhanced catalyst for hydroisomerization of hexadecane[J]. 能源化学(英文), 2016,25(3): 539-544
[4] Lipeng Zhou, Zhen Liu, Yuqi Bai, Tianliang Lu, Xiaomei Yang, Jie Xu.Hydrolysis of cellobiose catalyzed by zeolites-the role of acidity and micropore structure[J]. 能源化学(英文), 2016,25(1): 141-145
[5] Chen Zhang, Xuchen Lu, Tizhuang Wang.Synthesis of SAPO-34 using metakaolin in the presence of β-cyclodextrin[J]. 能源化学(英文), 2015,21(4): 401-406
[6] Chen Zhang, Xuchen Lu, Tizhuang Wang.Synthesis of SAPO-34 using metakaolin in the presence of β-cyclodextrin[J]. 能源化学(英文), 2015,24(4): 401-406
[7] Xiaodong Wang, Xiaoxia Gao, Mei Dong, Hongbin Zhao, Wei Huang.Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. 能源化学(英文), 2015,24(4): 490-496
[8] Xiaodong Wang, Xiaoxia Gao, Mei Dong, Hongbin Zhao, Wei Huang.Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template[J]. 能源化学(英文), 2015,21(4): 490-496
[9] Tinghai Wang, Jingfeng Li, Yi Su, Chenchen Wang, Yuan Gao, Lingjun Chou, Wenjun Yao.The tuning of pore structures and acidity for Zn/Al layered double hydroxides: The application on selective hydrodesulfurization for FCC gasoline[J]. 能源化学(英文), 2015,21(4): 432-440
[10] Tinghai Wang, Jingfeng Li, Yi Su, Chenchen Wang, Yuan Gao, Lingjun Chou, Wenjun Yao.The tuning of pore structures and acidity for Zn/Al layered double hydroxides: The application on selective hydrodesulfurization for FCC gasoline[J]. 能源化学(英文), 2015,24(4): 432-440
[11] Guiquan Zhang, Xin Zhang, Ting Bai, Tengfei Chen, Wentao Fan.Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization[J]. 能源化学(英文), 2015,24(1): 108-118
[12] Junhui Li, Yanan Wang, Wenzhi Jia, Zhiwen Xi, Huanhui Chen, Zhirong Zhu, Zhonghua Hu.Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons[J]. 能源化学(英文), 2014,23(6): 771-780
[13] Huijuan Li, Linling Li, Rui Zhang, Dongmei Tong, Changwei Hu.Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production[J]. 能源化学(英文), 2014,23(6): 732-741
[14] Hui Liu, Huijuan Wei, Wenjie Xin, Chao Song, Sujuan Xie, Zhenni Liu, Shenglin Liu, Longya Xu.Differences between Zn/HZSM-5 and Zn/HZSM-11 zeolite catalysts in alkylation of benzene with dimethyl ether[J]. 能源化学(英文), 2014,23(5): 617-624
[15] Hongyu Wu, Min Liu, Wei Tan, Keke Hou, Anfeng Zhang, Yiren Wang, Xinwen Guo.Effect of ZSM-5 zeolite morphology on the catalytic performance of the alkylation of toluene with methanol[J]. 能源化学(英文), 2014,23(4): 491-497
Copyright 2010 by 能源化学(英文)