? 能源化学(英文)
ISSN 1003-9953
     
能源化学(英文) 2017, Vol. 26 Issue (1) :155-162    DOI: 10.1016/j.jechem.2016.10.002
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Reaction of nitrous oxide with methane to synthesis gas: A thermodynamic and catalytic study
Naseer A. Khana,b, Eric M. Kennedya, Bogdan Z. Dlugogorskic, Adesoji A. Adesinad, Michael Stockenhubera
a Priority Research Centre for Energy(PRCfE), The University of Newcastle, Callaghan, NSW 2308, Australia;
b Department of Chemical Engineering, UET, Peshawar, KPK, Pakistan;
c School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150, Australia;
d ATODATECH LLC, Brentwood, CA 94513, USA
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 The aim of the present study is to explore the coherence of thermodynamic equilibrium predictions with the actual catalytic reaction of CH4 with N2O, particularly at higher CH4 conversions. For this purpose, key process variables, such as temperature (300℃-550℃) and a molar feed ratio (N2O/CH4=1, 3, and 5), were altered to establish the conditions for maximized H2 yield. The experimental study was conducted over the Co-ZSM-5 catalyst in a fixed bed tubular reactor and then compared with the thermodynamic equilibrium compositions, where the equilibrium composition was calculated via total Gibbs free energy minimization method.
The results suggest that molar feed ratio plays an important role in the overall reaction products distribution. Generally for N2O conversions, and irrespective of N2O/CH4 feed ratio, the thermodynamic predictions coincide with experimental data obtained at approximately 475℃-550℃, indicating that the reactions are kinetically limited at lower range of temperatures. For example, theoretical calculations show that the H2 yield is zero in presence of excess N2O (N2O/CH4=5). However over a Co-ZSM-5 catalyst, and with a same molar feed ratio (N2O/CH4) of 5, the H2 yield is initially 10% at 425℃, while above 450℃ it drops to zero. Furthermore, H2 yield steadily increases with temperature and with the level of CH4 conversion for reactions limited by N2O concentration in a reactant feed. The maximum attainable (from thermodynamic calculations and at a feed ratio of N2O/CH4=3) H2 yield at 550℃ is 38%, whereas at same temperature and over Co-ZSM-5, the experimentally observed yield is about 19%.
Carbon deposition on Co-ZSM-5 at lower temperatures and CH4 conversion (less than 50%) was also observed. At higher temperatures and levels of CH4 conversion (above 90%), the deposited carbon is suggested to react with N2O to form CO2.
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
关键词Gibbs free energy minimization   N2O   CH4   Synthesis gas     
收稿日期: 2016-08-08; 发布日期: 2016-10-20
通讯作者 Michael Stockenhuber     Email: michael.stockenhuber@newcastle.edu.au
引用本文:   
.Reaction of nitrous oxide with methane to synthesis gas: A thermodynamic and catalytic study[J]  能源化学(英文) , 2017,V26(1): 155-162
.Reaction of nitrous oxide with methane to synthesis gas: A thermodynamic and catalytic study[J]  Journal of Energy Chemistry, 2017,V26(1): 155-162
链接本文:  
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.10.002     或     http://www.jenergchem.org/CN/Y2017/V26/I1/155
 
[1] L. Donner, V. Ramanathan, J. Atmos. Sci. 37(1980) 119-124.
[2] C.N. Hewitt, W.T. Sturges, Global Atmospheric Chemical Change, Springer, Netherlands, 2013.
[3] M.N. Debbagh, C.S.M.D. Lecea, J. Pérez-Ramírez, Appl. Catal. B:Environ. 70(2007) 335-341.
[4] J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Appl. Catal. B:Environ. 44(2003) 117-151.
[5] S.-J. Lee, I.-S. Ryu, B.-M. Kim, S.-H. Moon, Int. J. Greenhouse Gas Control 5(2011) 167-176.
[6] J.C. Kramlich, W.P. Linak, Prog. Energy Combust. Sci. 20(1994) 149-202.
[7] R. Müller, Stratospheric Ozone Depletion and Climate Change, Royal Society of Chemistry, 2012.
[8] N.R.C.C.I. Committee, Report of the National Academy of Sciences, National Academy of Sciences, 1975.
[9] T. Chaki, M. Arai, T. Ebina, M. Shimokawabe, J. Mol. Catal. A:Chem. 227(2005) 187-196.
[10] K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3(2011) 423-459.
[11] D.S.A. Parmalian, F. Frusteri, A. Vaccari, F. Arena, Natural Gas Conversion V, Elsevier, Amsterdam, 1998.
[12] R.F.H. H.E. Curry-Hyde, Natural Gas Conversion II, Elsevier, Amsterdam, 1994.
[13] A. Holmen, Catal. Today 142(2009) 2-8.
[14] M.C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R.M. Navarro, J.L.G. Fierro, Catal. Today 171(2011) 15-23.
[15] J.H. Lunsford, Catal. Today 63(2000) 165-174.
[16] M.A. Vannice, Catal. Rev. 14(1976) 153-191.
[17] G.P. Van Der Laan, A.A.C.M. Beenackers, Catal. Rev.-Sci. Eng. 41(1999) 255-318.
[18] J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal. Today 139(2009) 244-260.
[19] J.N. Armor, Appl. Catal. A:Gen. 176(1999) 159-176.
[20] P. Ferreira-Aparicio, M.J. Benito, J.L. Sanz, Catal. Rev. 47(2005) 491-588.
[21] S. Freni, G. Calogero, S. Cavallaro, J. Power Sources 87(2000) 28-38.
[22] C. Song, Catal. Today 115(2006) 2-32.
[23] J. Zhu, J.G. van Ommen, L. Lefferts, Catal. Today 112(2006) 82-85.
[24] B. Christian Enger, R. Lødeng, A. Holmen, Appl. Catal. A:Gen. 346(2008) 1-27.
[25] X. Song, Z. Guo, Energy Convers. Manage. 47(2006) 560-569.
[26] H.H. Gunardson, J.M. Abrardo, Hydrocarbon Processing 78(1999) 87-93.
[27] R.S. Liu, M. Iwamoto, J.H. Lunsford, J. Chem. Soc., Chem. Commun. 11(1982) 78-79.
[28] H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford, J. Am. Chem. Soc. 106(1984) 4117-4121.
[29] M.M. Khan, G.A. Somorjai, J. Catal. 91(1985) 263-271.
[30] K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis, G.A. Somorjai, J. Catal. 94(1985) 501-507.
[31] G.I. Panov, K.A. Dubkov, E.V. Starokon, Catal. Today 117(2006) 148-155.
[32] M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 87(1983) 903-905.
[33] V.N. Parmon, G.I. Panov, A. Uriarte, A.S. Noskov, Catal. Today 100(2005) 115-131.
[34] B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, J. Catal. 225(2004) 300-306.
[35] N.A. Khan, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, M. Stockenhuber, Catal. Commun. 53(2014) 42-46.
[36] G.I. Panov, CATTECH 4(2000) 18-31.
[37] B.M. Abu-Zied, W. Schwieger, A. Unger, Appl. Catal. B:Environ. 84(2008) 277-288.
[38] K. Faungnawakij, R. Kikuchi, K. Eguchi, J. Power Sources 161(2006) 87-94.
[39] Y. Lwin, W.R.W. Daud, A.B. Mohamad, Z. Yaakob, Int. J. Hydrogen Energy 25(2000) 47-53.
[40] V. Mas, R. Kipreos, N. Amadeo, M. Laborde, Int. J. Hydrogen Energy 31(2006) 21-28.
[41] J.M. Smith, H.C. Van Ness, M.M. Abbott, Introduction to Chemical Engineering Thermodynamics, seventh ed., McGraw Hill, Boston, 2005.
[42] H. Wang, X. Wang, M. Li, S. Li, S. Wang, X. Ma, Int. J. Hydrogen Energy 34(2009) 5683-5690.
[43] ROTEXO. GmbH & Co. KG, Cosilab Software, 2004.
[44] R. Horn, K.A. Williams, N.J. Degenstein, L.D. Schmidt, J. Catal. 242(2006) 92-102.
[45] F. van Looij, J.C. van Giezen, E.R. Stobbe, J.W. Geus, Catal. Today 21(1994) 495-503.
[46] J. Hagen, Industrial Catalysis:A Practical Approach, Wiley-VCH, 1999.
[47] N.A.S. Amin, T.C. Yaw, Int. J. Hydrogen Energy 32(2007) 1789-1798.
[48] J.L. Motz, H. Heinichen, W.F. Hölderich, J. Mol. Catal. A:Chem. 136(1998) 175-184.
[49] J. Jia, K.S. Pillai, W.M.H. Sachtler, J. Catal. 221(2004) 119-126.
[50] A. Setiawan, E.M. Kennedy, B.Z. Dlugogorski, A.A. Adesina, O. Tkachenko, M. Stockenhuber, Energy Technol. 2(2014) 243-249.
[51] H.S. Fogler, Elements of Chemical Reaction Engineering, Prentice-Hall, 1986.
[52] M. Rivallan, G. Ricchiardi, S. Bordiga, A. Zecchina, J. Catal. 264(2009) 104-116.
[53] B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, J. Catal. 224(2004) 148-155.
[54] D.A. Bulushev, L. Kiwi-Minsker, A. Renken, J. Catal. 222(2004) 389-396.
[1] Yuhang Xie, Hulin Zhang, Guang Yao, Saeed Ahmed Khan, Xiaojing Cui, Min Gao, Yuan Lin.Highly efficient and stable electrooxidation of methanol and ethanol on 3D Pt catalyst by thermal decomposition of In2O3 nanoshells[J]. 能源化学(英文), 2017,26(1): 193-199
[2] Min Chen, Zhanglong Guo, Jian Zheng, Fangli Jing, Wei Chu.CO2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase & treatment impact[J]. 能源化学(英文), 2016,25(6): 1070-1077
[3] Chunmiao Jia, Jiajian Gao, Yihu Dai, Jia Zhang, Yanhui Yang.The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process[J]. 能源化学(英文), 2016,25(6): 1027-1037
[4] Abtin Ebadi Amooghin, Mohammadreza Omidkhah, Hamidreza Sanaeepur, Ali Kargari.Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation[J]. 能源化学(英文), 2016,25(3): 450-462
[5] Changyong Sun, Guangzong Fang, Xiaoguang Guo, Yuanli Hu, Shuqi Ma, Tianhua Yang, Jie Han, Hao Ma, Dali Tan, Xinhe Bao.Methane dehydroaromatization with periodic CH4-H2 switch: A promising process for aromatics and hydrogen[J]. 能源化学(英文), 2015,24(3): 257-263
[6] Xiaoyan Wu, Jie Ma, Yong-Sheng Hu, Hong Li, Liquan Chen.Nano-sized carboxylates as anode materials for rechargeable lithium-ion batteries[J]. 能源化学(英文), 2014,23(3): 269-273
[7] Chatla Anjaneyulu, Velisoju Vijay Kumar, Suresh K. Bhargava, Akula Venugopal.Characteristics of La-modified Ni-Al2O3 and Ni-SiO2 catalysts for COx-free hydrogen production by catalytic decomposition of methane[J]. 能源化学(英文), 2013,22(6): 853-860
[8] Jinglin Liu, Xiaobing Zhu, Xiaosong Li, Kai Li, Chuan Shi, Aimin Zhu.Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor[J]. 能源化学(英文), 2013,22(5): 681-684
[9] Yanhong Wang, Xuemei Lang, Shuanshi Fan* .Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas[J]. 能源化学(英文), 2013,22(1): 39-47
[10] Amin Aziznia, Hamid Reza Bozorgzadeh*, Naser Seyed-Matin, Morteza Baghalha.Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3 [J]. 能源化学(英文), 2012,21(4): 466-475
[11] Alireza Behroozsarand Akbar Zamaniyan Hamid Mehdizadeh Hosein Ali Ghadirian.Modeling of Microreactor for Syngas Production by Catalytic Partial Oxidation of Methane [J]. 能源化学(英文), 2010,19(6): 0-0
[12] Bingyao Huang;Xiujin Li;Shengfu Ji*;Bao Lang;Fabien Habimana;Chengyue Li.Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane[J]. 能源化学(英文), 2008,17(3): 225-231
[13] Xianquan Ao;Hua Wang*;Yonggang Wei.Comparative study on the reaction of methane over a ZnO bed in the absence and presence of CO2[J]. 能源化学(英文), 2008,17(1): 81-86
[14] Xiaoping Dai;Changchun Yu*.Characterization and catalytic performance of CeO2-Co/SiO2 catalyst for Fischer-Tropsch synthesis using nitrogen-diluted synthesis gas over a laboratory scale fixed-bed reactor[J]. 能源化学(英文), 2008,17(1): 17-23
[15] Jingchang Zhang*;Xuehua Guo;Weiliang Cao.Effect of Several Anions on Fe-Based Catalyst for Fischer-Tropsch Synthesis[J]. 能源化学(英文), 2007,16(4): 377-381
Copyright 2010 by 能源化学(英文)