ISSN 1003-9953
能源化学(英文) 2017, Vol. 26 Issue (1) :182-192    DOI: 10.1016/j.jechem.2016.11.013
ARTICLES 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << Previous Articles | Next Articles >>
Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances
Shehnaza, Xuedan Songa, Suzhen Rena,a, Ying Yanga, Yanan Guoa, Hongyu Jinga, Qing Maob, Ce Haoa
a State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China;
b College of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
Download: PDF (956KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 One of the major challenges associated with fuel cells is the design of highly efficient electrocatalysts to reduce the high overpotential of the oxygen reduction reaction (ORR). Here we report Polyaniline (PANI) based micro/nanomaterials with or without transition metals, prepared by the emulsion polymerization and subsequent heat treatment. PANI microspheres with the diameter of about 0.7 μm have been prepared in basic (NH3 solution) condition, using two different types of surfactant (CTAB, SDS) as the stabilizer, ammonium persulphate (APS) as oxidant with aniline/surfactants molar ratio at 1/1 under the hydrothermal treatment. PANI nanorods, Fe-PANI, and Fe-Co-PANI have been synthesized in acidic (HCl) medium with aniline/surfactants molar ratio at 1/2 and polymerization carried out without stirring for 24 h. Products mainly Fe-Co-PANI have shown high current density with increasing sweep rate and excellent specific capacitance 1753 F/g at the scan rate of 1 mV/s. Additionally, it has shown high thermal stability by thermogravimetric analysis (TGA). Fe-PANI has been investigated for excellent performance toward ORR with four electron selectivity in the basic electrolyte. The PANI-based catalysts from emulsion polymerization demonstrate that the method is valuable for making non-precious metal heterogeneous electrocatalysts for ORR or energy storage and conversion technology.
Email Alert
关键词Emulsion polymerization   Interfacial conductivity   Fe-Co-PANI   Non-precious metal electrocatalyst   Oxygen reduction reaction     
收稿日期: 2016-07-15; 发布日期: 2016-11-27

We gratefully acknowledge support by the National Natural Science Foundation of China (Grant no. 21373042).

通讯作者 Suzhen Ren, Ce Hao     Email: rensz@dlut.edu.cn;haoce@dlut.edu.cn
.Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances[J]  能源化学(英文) , 2017,V26(1): 182-192
.Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances[J]  Journal of Energy Chemistry, 2017,V26(1): 182-192
http://www.jenergchem.org/CN/10.1016/j.jechem.2016.11.013     或     http://www.jenergchem.org/CN/Y2017/V26/I1/182
[1] J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108(2004) 17886-17892.
[2] P. Costamagna, S. Srinivasan, J. Power Sources 102(2001) 242-252.
[3] P.J. Ferreira, G.J. Ia O', Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 152(2005) A2256-A2271.
[4] H.A. Gasteiger, N.M. Markovic, Science 324(2009) 48-49.
[5] H.W. Liang, W. Wei, Z.S. Wu, X.L. Feng, K. Müllen, J. Am. Chem. Soc. 135(2013) 16002-16005.
[6] Q. Wang, Z.Y. Zhou, Y.J. Lai, Y. You, J.G. Liu, X.L. Wu, E. Terefe, C. Chen, L. Song, M. Rauf, N. Tian, S.G. Sun, J. Am. Chem. Soc. 136(2014) 10882-10885.
[7] D.S. Su, G.Q. Sun, Angew. Chem. Int. Ed. 50(2011) 11570-11572.
[8] H.R. Byon, J. Suntivich, Y. Shao-Horn, Chem. Mater. 23(2011) 3421-3428.
[9] R. Bashyam, P. Zelenay, Nature 443(2006) 63-66.
[10] M. Lefèvre, E. Proietti, F. Jaouen, J.P. Dodelet, Science 324(2009) 71-74.
[11] J.K. Dombrovskis, A.E.C. Palmqvist, Fuel Cells 16(2016) 4-22.
[12] G Wu, K.L. More, C.M. Johnston, P. Zelenay, Science 332(2011) 443-447.
[13] E.E. Hafez, H.S. Hassan, M.F. Elkady, E. Salama, Int. J. Sci. Technol. Res. 3(2014) 318-324.
[14] C.R. Martin, Science 266(1994) 1961-1966.
[15] G. Wu, Z. Chen, K. Artyushkova, F.H. Garzon, P. Zelenay, ECS Trans. 16(2008) 159-170.
[16] J. Wang, J. Wang, Z. Yang, Z. Wang, F. Zhang, S. Wang, React. Funct. Polym. 68(2008) 1435-1440.
[17] F. Cheng, W. Tang, C. Li, J. Chen, H. Liu, P. Shen, S. Dou, Chem. Eur. J. 12(2006) 3082-3088.
[18] S. Mutyala, M. Jayaraman, Int. J. Electrochem. 2014(2014) 1-11.
[19] X.M. Feng, R.M. Li, Y.W. Ma, R.F. Chen, Q.B. Mei, Q.L. Fan, W. Huang, Sci. China Chem. 54(2011) 1615-1621.
[20] D.H. Zhou, Y.H. Li, J.Y. Wang, P. Xu, X.J. Han, Mater. Lett. 65(2011) 3601-3604.
[21] U. Bogdanovi?, I. Pašti, G. ?iri?-Marjanovi?, M. Mitri?, S.P. Ahrenkiel, V. Vodnik, ACS Appl. Mater. Interfaces 7(2015) 28393-28403.
[22] C.T.P. da Silvaa, M.D. dos, S. Neto, V.L. Kupfer, S.L. de Oliveira, N.L. de., C. Domingues, A.W. Rinaldi, Mater. Lett. 100(2013) 303-305.
[23] H. Qiu, S. Qi, J. Wang, D. Wang, X. Wu, Mater. Lett. 64(2010) 1964-1967.
[24] X.G. Li, H.J. Zhou, M.R. Huang, Polymer 46(2005) 1523-1533.
[25] P. Anilkumar, M. Jayakannan, Langmuir 22(2006) 5952-5957.
[26] R. de Vries, C.C. Co, E.W. Kaler, Macromolecules 34(2001) 3233-3244.
[27] G. Li, S. Yan, E. Zhou, Y. Chen, Colloids Surf. A 276(2006) 40-44.
[28] S.J. Park, S.Y. Park, A.S. Cho, H.J. Choi, M.S. Jhon, Synth. Metal 152(2005) 337-340.
[29] T.K. Sarma, A. Chattopadhyay, J. Phys. Chem. A 108(2004) 7837-7842.
[30] K. Landfester, Angew. Chem. Int. Ed. 48(2009) 4488-4507.
[31] D.F. Evans, H. Wennerstrom, The Colloidal Domain:Where Physics, Chemistry, Biology and Technology Meet, Second ed., Wiley-VCH, New York, 1999.
[32] Y. Yang, S. Ren, X. Song, Y. Guo, D. Si, H. Jing, S. Ma, C. Hao, M. Ji, Electrochim. Acta 209(2016) 350-359.
[33] S. Ren, S. Ma, Y. Yang, Q. Mao, C. Hao, Electrochim. Acta 178(2015) 179-189.
[34] P. Simon, Y. Gogotsi, Nat. Mater. 7(2008) 845-854.
[35] B.K. Rai, P. Sinha, V. Singh, S.N. Vidhyarthi, Amit, A. Pandey, S.B. Shahi, Orient. J. Chem. 30(2014) 1429-1433.
[36] Y.S. Zhang, W.H. Xu, W.T. Yao, S.H. Yu, J. Phys. Chem. C 113(2009) 8588-8594.
[37] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279(1998) 549-552.
[38] Y.F. Huang, C.W. Lin, Polym. Int. 59(2010) 1226-1232.
[39] B. Jugovic, M. Gvozdenovi, J. Stevanovi, T. Trisovi, B. Grgur, Mater. Chem. Phys. 114(2009) 939-942.
[40] F. Montilla, M.A. Cotarelo, E. Morallon, J. Mater. Chem. 19(2009) 305-310.
[41] H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6(2013) 1185-1191.
[42] S.K. Meher, G.R. Rao, J. Phys. Chem. C 115(2011) 15646-15654.
[43] N.H. Khdary, M.E. Abdesalam, G.E.L. Enany, J. Electrochem. Soc. 161(2014) G63-G68.
[44] Y. Yan, Q. Cheng, V. Pavlinek, P. Saha, C. Li, Electrochim. Acta 71(2012) 27-32.
[45] W. Cheng, R.G. Compton, Angew. Chem. Int. Ed. 54(2015) 7082-7085.
[46] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14(2015) 937-942.
[47] S.J. Guo, S. Zhang, S.H. Sun, Angew. Chem. Int. Ed. 52(2013) 8526-8544.
[48] E. Yeager, Electrochim. Acta 29(1984) 1527-1537.
[49] J. Masa, W. Xia, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed. 54(2015) 10102-10120.
[50] R.L. Liu, D.Q. Wu, X.L. Feng, K. Mullen, Angew. Chem. Int. Ed. 49(2010) 2565-2569.
[51] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Second ed., John Wiley & Sons, New York, 2001.
[52] S. Maldonado, J.K. Stevenson, J. Phys. Chem. B 108(2004) 11375-11383.
[53] V. Nallathambi, J.W. Lee, S.P. Kumaraguru, G. Wu, B.N. Popov, J. Power Sources 183(2008) 34-42.
[54] M. Lefvre, J.P. Dodelet, P. Bertrand, J. Phys. Chem. B 106(2002) 8705-8713.
[55] F. Jaouen, S. Marcotte, J.P. Dodelet, G. Lindbergh, J. Phys. Chem. B 107(2003) 1376-1386.
[56] J. Herranz, M. Lefevre, N. Larouche, B. Stansfield, J.P. Dodelet, J. Phys. Chem. C 111(2007) 19033-19042.
[57] M. Lefevre, J.P. Dodelet, Electrochim. Acta 53(2008) 8269-8276.
[58] R. Chen, H. Li, D. Chu, G. Wang, J. Phys. Chem. C 113(2009) 20689-20697.
[1] Vincent Mirai Bau, Xiangjie Bo, Liping Guo.Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction[J]. 能源化学(英文), 2017,26(1): 63-71
[2] Xueqiang Zhang, Xinbing Cheng, Qiang Zhang.Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. 能源化学(英文), 2016,25(6): 967-984
[3] Lizhi Yuan, Zhao Yan, Luhua Jiang, Erdong Wang, Suli Wang, Gongquan Sun.Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. 能源化学(英文), 2016,25(5): 805-810
[4] Liping Wang, Weishang Jia, Xiaofeng Liu, Jingze Li, Maria Magdalena Titirici.Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. 能源化学(英文), 2016,25(4): 566-570
[5] Anqi Zhao, Justus Masa, Wei Xia.Oxygen-deficient titania as alternative support for Pt catalysts for the oxygen reduction reaction[J]. 能源化学(英文), 2014,23(6): 701-707
[6] Panpan Miao, Gang Li, Guoquan Zhang, Hong Lu.Co(Ⅱ)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen[J]. 能源化学(英文), 2014,23(4): 507-512
[7] Li Xu, Guoshun Pan, Xiaolu Liang, Guihai Luo, Chunli Zou, Gaopan Chen.Synthesis of dual-doped non-precious metal electrocatalysts and their electrocatalytic activity for oxygen reduction reaction[J]. 能源化学(英文), 2014,23(4): 498-506
[8] Xiao Liu, Hongmin Wang, Siguo Chen, Xueqiang Qi, Huiliang Gao, Yi Hui, Yang Bai, Lin Guo, Wei Ding, Zidong Wei.SO2-tolerant Pt-MoO3/C catalyst for oxygen reduction reaction[J]. 能源化学(英文), 2014,23(3): 358-362
Copyright 2010 by 能源化学(英文)