Journal of Energy Chemistry
ISSN 1003-9953
Journal of Natural Gas 2011, Vol. 20 Issue (6) :577-584    DOI: 10.1016/S1003-9953(10)60242-3
Current Issue | Next Issue | Archive | Adv Search << Previous Articles | Next Articles >>
Molecular dynamics simulation of structure H clathrate-hydrates of binary guest molecules
Hamid Erfan-Niya, Hamid Modarress*
Department of Chemical Engineering, Amirkabir University of Technology, Hafez Avenue 15914, Tehran, Iran

Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Molecular dynamics (MD) simulations are performed to study the stability of structure H clathrate-hydrates of methane+large-molecule guest substance (LMGS) at temperatures of 270, 273, 278 and 280 K under canonical (NVT-) ensemble condition in a 3×3×3 structure H unit cell replica with 918 TIP4P water molecules. The studied LMGS are 2-methylbutane (2-MB), 2, 3-dimethylbutane (2, 3-DMB), neohexane (NH), methylcyclohexane (MCH), adamantane and tert-butyl methyl ether (TBME). In the process of MD simulation, achieving equilibrium of the studied system is recognized by stability in calculated pressure for NVT- ensemble. So, for the accuracy of MD simulations, the obtained pressures are compared with the experimental phase diagrams. Therefore, the obtained equilibrium pressures by MD simulations are presented for studying the structure H clathrate-hydrates. The results show that the calculated temperature and pressure conditions by MD simulations are consistent with the experimental phase diagrams. Also, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules are used to analysis the characteristic configurations of the structure H clathrate-hydrate.
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
Articles by authors
Hamid Erfan-Niya
Hamid Modarress*
Keywordsstructure H clathrate-hydrate   methane+large-molecule guest substance   molecular dynamics   stability   radial distribution function      
Received: 2011-03-14; published: 2011-11-18
Corresponding Authors: Hamid Modarress     Email:
Cite this article:   
Hamid Erfan-Niya, Hamid Modarress* .Molecular dynamics simulation of structure H clathrate-hydrates of binary guest molecules [J]  Journal of Natural Gas , 2011,V20(6): 577-584
URL:     或
[1] Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases. 3rd Ed. Boca Raton: CRC Press, 2008
[2] Wang L, Dong S L. J Nat Gas Chem, 2010, 19(1): 43
[3] Wang L, Dong S L. J Nat Gas Chem, 2007, 16(4): 423
[4] Lang X M, Fan S S, Wang Y H. J Nat Gas Chem, 2010, 19(3): 203
[5] Hao W F, Wang J Q, Fan S S, Hao W B. Energy Conv Manag, 2008, 49(10): 2546
[6] Tanaka H. Fluid Phase Equilib, 1998, 144(1-2): 361
[7] Gaudette J, Servio P. J Chem Eng Data, 2007, 52(4): 1449
[8] Kvamme B, Kuznetsova T, Aasoldsen K. Mol Simul, 2005, 31(14-15): 1083
[9] Kvamme B, Kuznestova T, Aasoldsen K. J Mol Graph, 2005, 23(6): 524
[10] Chihaia V, Adams S, Kuhs W F. Chem Phys, 2005, 317(2-3): 208
[11] McMullan R K, Jeffrey G A. J Chem Phys, 1965, 42(8): 2725
[12] Mak T C W, McMullen R K. J Chem Phys, 1965, 42(8): 2732
[13] Ripmeester J A, Tse J S, Ratcliffe C I, Powell B M. Nature, 1987, 325(6100): 135
[14] Klauda J B, Sandler S I. Chem Eng Sci, 2003, 58(1): 27
[15] Mehta A P, Sloan E D. AIChE J, 1996, 42(7): 2036
[16] Lederhos J P, Mehta A P, Nyberg G B, Warn K J, Sloan E D. AIChE J, 1992, 38(7): 1045
[17] Becke P, Kessel D, Rahmanian I. In: Proceedings of the European Petroleum Conference, 1992. 159
[18] Mehta A P, Sloan E D. J Chem Eng Data, 1993, 38(4): 580
[19] Mehta A P, Sloan E D. J Chem Eng Data, 1994, 39(4): 887
[20] Mehta A P, Sloan E D. AIChE J, 1994, 40(2): 312
[21] Thomas M, Behar E. In: Proceedings of the 73rd GPA Convention, 1994. 100
[22] Tohidi B, Danesh A, Burgass R, Todd A. In: Proceedings of the Second International Conference on Natural Gas Hydrates, Toulouse, France, 1996. 109
[23] Mooijer-van den Heuvel M M, Peters C J, de Swaan Arons J. Fluid Phase Equilib, 2000, 172(1): 73
[24] Nakamura T, Makino T, Sugahara T, Ohgaki K. Chem Eng Sci, 2003, 58(2): 269
[25] Ohmura R, Matsuda S, Uchida T, Ebinuma T, Narita H. J Chem Eng Data, 2005, 50(3): 993
[26] Hütz U, Englezos P. Fluid Phase Equilib, 1996, 117(1-2): 178
[27] Makogon T Y, Mehta A P, Sloan E D. J Chem Eng Data, 1996, 41(2): 315
[28] van der Waals J H, Platteeuw J C. Adv Chem Phys, 1959, 2: 1
[29] Cheng W, Wu H C, Ye X Q, Zhou H Y. Prog Nat Sci, 2004, 14(11): 1015
[30] Alavi S, Ripmeester J A, Klug D D. J Chem Phys, 2005, 123(2): 024507
[31] English N J, MacElroy J M D. J Comput Chem, 2003, 24(13): 1569
[32] Moon C, Taylor P C, Rodger P M. J Am Chem Soc, 2003, 125(16): 4706
[33] Storr M T, Taylor P C, Monfort J P, Rodger P M. J Am Chem Soc, 2004, 126(5): 1569
[34] Chialvo A A, Houssa M, Cummings P T. J Phys Chem B, 2002, 106(2): 442
[35] Cao Z T, Tester J W, Sparks K A, Trout B L. J Phys Chem B, 2001, 105(44): 10950
[36] Zele S R, Lee S Y, Holder G D. J Phys Chem B, 1999, 103(46): 10250
[37] Forrisdahl O K, Kvamme B, Haymet A D J. Mol Phys, 1996, 89(3): 819
[38] Klauda J B, Sandler S I. Chem Eng Sci, 2003, 58(1): 27
[39] Klauda J B, Sandler S I. J Phys Chem B, 2002, 106(22): 5722
[40] Rodger P M. J Phys Chem, 1990, 94(15): 6080
[41] Tanaka H, Kiyohara K. J Chem Phys, 1993, 98(5): 4098
[42] Tanaka H, Kiyohara K. J Chem Phys, 1993, 98(10): 8110
[43] Tanaka H, J Chem Phys, 1994, 101(12): 10833
[44] Tanaka H, Nakatsuka T, Koga K. J Chem Phys, 2004, 121(11): 5488
[45] Okano Y, Yasuoka K. J Chem Phys, 2006, 124(2): 024510
[46] Miyoshi T, Ohmura R, Yasuoka K. Mol Simul, 2007, 33(1-2): 65
[47] Susilo R, Alavi S, Ripmeester J A, Englezos P. J Chem Phys, 2008, 128(19): 194505
[48] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. J Chem Phys, 1983, 79(2): 926
[49] Poling B E, Prausnitz J M, O'Connell J P. The Properties of Gases and Liquids. 5th Ed. New York: McGraw-Hill, 2001
[50] Papadimitriou N I, Tsimpanogiannis I N, Peters C J, Papaioannou A T, Stubos A K. J Phys Chem B, 2008, 112(45): 14206
[51] Alavi S, Ripmeester J A, Klug D D. J Chem Phys, 2006, 124(20): 204707
[52] Chang J, Sandler S I. J Chem Phys, 2004, 121(15): 7474
[53] Plimpton S J. J Comput Phys, 1995, 117(1): 1
[54] Pratt R M, Mei D H, Guo T M, Sloan E D. J Chem Phys, 1997, 106(10): 4187
[55] Susilo R, Alavi S, Ripmeester J, Englezos P. Fluid Phase Equilib, 2008, 263(1): 6
[56] Verlet L. Phys Rev, 1967, 159(1): 98
[57] Ryckaert J P, Ciccotti G, Berendsen H J C. J Comput Phys, 1977, 23(3): 327
[58] Nose S. J Chem Phys, 1984, 81(1): 511
[59] Hoover W G. Phys Rev A, 1985, 31(3): 1695
[60] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987
[61] Ferdows M, Ota M. JKAU: Eng Sci, 2005, 16: 131
[62] Ferdows M, Ota M. Chem Eng Technol, 2005, 28(2): 168
[63] Konnert J H, Karle J, D'Antonio P. In: ASM Handbook, Vol. 10, Materials Characterization, Ohio, USA, 1986. 393
[64] Soper A K. Chem Phys, 2000, 258(2-3): 121
[65] Ben-Naim A. Molecular Theory of Solutions. New York: Oxford University Press, 2006
[1] Yuanshuai Zhu, Zhibei Qu, Guilin Zhuang, Wulin Chen, Jianguo Wang.Coronal multi-walled silicon nanotubes[J]. Journal of Energy Chemistry, 2013,22(3): 408-412
[2] Fei Han, Wen-Cui Li, Duo Li, An-Hui Lu.Ammonia-treatment assisted fully encapsulation of Fe2O3 nanoparticles in mesoporous carbons as stable anodes for lithium ion batteries[J]. Journal of Energy Chemistry, 2013,22(2): 329-335
[3] Shaojun Xu, Qiang Zhang, Zhaoxuan Feng, Xiaojing Meng, Tongyu Zhao, Chunyi Li*, Chaohe Yang, Honghong Shan .A high-surface-area silicoaluminophosphate material rich in Brönsted acid sites as a matrix in catalytic cracking[J]. Journal of Energy Chemistry, 2012,21(6): 685-693
[4] Jianguo Liu, Yizan Zuo, Minghan Han*, Zhanwen Wang, Dezheng Wang .Stability improvement of the Nieuwland catalyst in the dimerization of acetylene to monovinylacetylene [J]. Journal of Energy Chemistry, 2012,21(5): 495-500
[5] S. Ja?o*, S. Sadjadi, H. R. Godini*, U. Simon, S. Arndt, O. G?rke, A. Berthold, H. Arellano-Garcia, H. Schubert, R. Schom?cker, G. Wozny.Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane [J]. Journal of Energy Chemistry, 2012,21(5): 534-543
[6] Jindou Huang, Shuhao Wen, Jianyong Liu*, Guozhong He .Band gap narrowing of TiO2 by compensated codoping for enhanced photocatalytic activity[J]. Journal of Energy Chemistry, 2012,21(3): 302-307
[7] M. Mohammad-Taheri, A. Zarringhalam Moghaddam*, K. Nazari, N. Gholipour Zanjani .Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose[J]. Journal of Energy Chemistry, 2012,21(2): 119-125
[8] Min Yang*, Haijun Guo, Yansheng Li, Qiong Dang.CH4-CO2 reforming to syngas over Pt-CeO2-ZrO2/MgO catalysts: Modification of support using ion exchange resin method[J]. Journal of Energy Chemistry, 2012,21(1): 76-82
[9] Shicai Sun*, Yuguang Ye, Changling Liu, Fengkui Xiang, Yan Ma.P-Tstability conditions of methane hydrate in sediment from South China Sea[J]. Journal of Energy Chemistry, 2011,20(5): 531-536
[10] Xuhua Zou*, Jinguang Xu, Shixue Qi, Zhanghuai Suo, Lidun An, Feng Li.Effects of preparation conditions of Au/FeOx/Al2O3 catalysts prepared by a modified two-step method on the stability for CO oxidation[J]. Journal of Energy Chemistry, 2011,20(1): 41-47
[11] .Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe2O3-CuO/γ-Al2O3 catalyst[J]. Journal of Energy Chemistry, 2010,19(6): 0-0
[12] Yuning Li;Dong Liu;Shenglin Liu;Wei Wang;Sujuan Xie;Xiangxue Zhu;Longya Xu*.Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites[J]. Journal of Energy Chemistry, 2008,17(1): 69-74
[13] Feifei Sun;Shunhe Zhong.Study on Chemisorption, Catalytic Behavior, and Stability of Supported Au Catalyst for the Propylene Epoxidation Reaction[J]. Journal of Energy Chemistry, 2006,15(1): 45-51
[14] Nor Aishah Saidina Amin;Kusmiyati.Improved Performance of W/HZSM-5 Catalysts for Dehydroaromatization of Methane[J]. Journal of Energy Chemistry, 2004,13 (3): 148-159
[15] Rencun Lin;Yiquan Yang;Youzhu Yuan;Zhongyu Lin;Chen Li;Hua Yang;Qi Wang;Hongbin Zhang.PROMOTING EFFECT OF ZrO2 TO CATALYTIC PERFORMANCE OF COPPER-BASED CATALYST FOR METHANOL SYNTHESIS[J]. Journal of Energy Chemistry, 2001,10(4): 308-318
Copyright 2010 by Journal of Energy Chemistry